
Warwick Mathematics Exchange

MA252

Combinatorial
Optimisation

2023, February 3th

Desync, aka The Big Ree

Front Matter Table of Contents

Contents

Table of Contents i

1 Complexity Analysis 1
1.1 Asymptotic Notation . 1
1.2 Master Theorem . 4

2 Graph Theory 5
2.1 Minimal & Maximal Elements . 5
2.2 Basic Definitions & Theorems . 5
2.3 Graph Traversal . 8
2.4 Minimum Cost Spanning Tree . 11

2.4.1 Number of Spanning Trees . 13
2.5 Shortest Path Algorithm . 13
2.6 Network Flow . 17

2.6.1 Residual Networks . 18
2.7 Matchings . 23

2.7.1 Hall’s Condition . 24
2.7.2 Maximum Independent Set . 25
2.7.3 Augmenting Paths . 26
2.7.4 Maximum Weight Matching . 26
2.7.5 Maximum Independent Set . 26

2.8 Graph Transformations for Maximum Independent Sets 27
2.9 Stable Matching . 28
2.10 Eulerian Graphs . 30
2.11 Chinese Postman . 31
2.12 Independence System . 33

3 Polynomial Time Solvability 37
3.1 Decision Problems . 37
3.2 Boolean Satisfiability . 39
3.3 Approximation Algorithms . 44
3.4 Chromatic Numbers . 45
3.5 Bin Packing . 48
3.6 Steiner Trees . 51

Multivariable Calculus | i

Front Matter Preface

Introduction

Combinatorial Optimisation is the study of finding optimal objects from finite sets, where the search
space is discrete or discretisable. For instance, given a weighted finite graph, what is the optimal route
to get from point A to point B? Combinatorial optimisation is closely related to complexity theory
and theoretical computer science, as well as more practical applications in logistics and distribution
optimisation problems.

This document is intended to broadly cover all the topics within the Combinatorial Optimisation module.
Some basic graph theory and common data structures (arrays, queues, stacks) will be assumed; some
basic definitions will be reiterated here, but for a more general overview, I recommend viewing my book,
where you can also find connections between different areas conveniently hyperlinked together in one file.

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. This
document was written during the 2022 academic year, so any changes in the course since then may not
be accurately reflected. Also, this module doesn’t have any notes, so the structure of this document is
based on (non-note) material from previous years.

Notes on formatting
Due to the nature of this module, I will be mixing mathematical and programming notation, a lot.
obj.flag represents an instance attribute, flag, attached to an object, obj. In algorithm blocks, single
equality (=) or left arrow (←) represents variable assignment while double equality (==) represents an
equality check. Setting a variable to “[]” indicates a list or an array being instantiated.

New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

History
First Edition: 2023-01-18∗

Current Edition: 2023-02-03

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.

Multivariable Calculus | ii

https://drive.google.com/file/d/1BD8KvjNtC1rLTcWGz8aPsEyzPuGKRpP-
mailto:Warwick.Mathematics.Exchange@gmail.com
mailto:Warwick.Mathematics.Exchange@gmail.com
https://ko-fi.com/desync
https://ko-fi.com/desync

MA252 Complexity Analysis

1 Complexity Analysis

1.1 Asymptotic Notation
Big O notation describes the limiting or asymptotic behaviour of a function as its argument tends towards
some value, often infinity. Asymptotic descriptions like this allow us to quantify how good or bad an
algorithm is mathematically, instead of running and testing several implementations of that algorithm
on different machines, etc.

Let f be a real (or complex) valued function, and let g be a real valued function. Furthermore, let f
and g be defined on some unbounded above subset of the positive real numbers, and let g(x) > 0 for all
sufficiently large x.

Then, if there exists M > 0 and x0 such that |f(x)| ≤Mg(x) for all x ≥ x0, we write f(x) ∈ O(g(x)) as
x→∞. The assumption that x is tending to infinity is often implicit, and we just write f(x) ∈ O(g(x))
alone. Essentially, f(x) ∈ O(g(x)) if |f | is bounded above by g asymptotically, up to a constant factor.

f(x) ∈ O(g(x)) := ∃M > 0∃x0∀x > x0 : |f(x)| ≤Mg(x)

There is also an analogous definition for x tending to a finite value a involving deltas, but it will not be
discussed here. Instead, we can unify the two cases with the following alternative characterisation: if

f(x) ∈ O(g(x)) := lim sup
x→a

|f(x)|
g(x)

<∞

then f(x) ∈ O(g(x)) as x→ a.

We sometimes use = instead of ∈, but this equality is not symmetric. O(f(n)) = O(g(n)) is not the
same as O(g(n)) = O(f(n)). For example, O(n) = O(n2), but O(n2) ̸= O(n). For this reason, ∈ will be
preferred in this document. You can also interpret O(g(n)) as a class of functions that don’t grow faster
than g, so the notation ∈ also makes sense there (though, in this interpretation, you may be tempted to
write O(n) ⊂ O(n2) when comparing these classes, which is not common notation).

Many of these classes have names, particularly in the context of analysing algorithm efficiency. Here are
a few classes and algorithms, ordered by growth rate.

Class Name Example
O(1) Constant Returning the first element of a list, calculating (−1)n
O(log log n) Double Implementing a van Emde Boas priority queue

Logarithmic
O(log n) Logarithmic Binary Search
O(n) Linear Searching through an unsorted list
O(n log n) Log-Linear Fast Fourier transform, merge sort, heapsort

or Linearithmic
O(n2) Quadratic Naive multiplication of n-digit numbers, bubble sort
O(n3) Cubic Naive matrix multiplication
O(nk), k ∈ N Polynomial Determinant with LU decomposition, finding maximum match-

ing in bipartite graph
O(kn) Exponential Travelling salesman with dynamic programming, solving 3-SAT

(linear exp)
O(kn

m

) Exponential Decide a winning strategy for a game with polynomial turns
and exponential moves, such as chess or go on arbitrary sized
boards.

O(n!) Factorial Travelling salesman with brute force, determinant with Lapla-
cian expansion

O(km
n

) Double Exp Deciding a FOL sentence over the naturals with the addition
operation and equality predicate

Combinatorial Optimisation | 1

MA252 1.1 Asymptotic Notation

Another notation is Ω or big-Omega notation. There are two incompatible definitions for this notation,
but we will follow Knuth’s convention: f(x) ∈ Ω(g(x)) if and only if g(x) ∈ O(f(x)): f is bounded below
by g asymptotically, up to a constant factor.

f(x) ∈ Ω(g(x)) := ∃M > 0∃x0∀x > x0 : |f(x)| ≥Mg(x)

or equivalently,

f(x) ∈ Ω(g(x)) := lim inf
x→∞

f(x)

g(x)
> 0

This is just the dual of big-O notation.

The last important notation we will cover is Θ, or big-Theta notation. f(x) ∈ Θ(g(x)) if both f(x) ∈
O(g(x)) and f(x) ∈ Ω(g(x)): f is bounded both above and below by g, up to a constant factor.

∃M1∃M2∃x0∀x > x0 : M1g(x) ≤ f(x) ≤M2g(x)

As we only care about the shape of growth as n becomes very large, when analysing runtime complexity
of algorithms, we discard all coefficients, and keep only the term with the highest growth rate, as it will
eventually dominate everything else. For instance, 2x5 + 93x2 + 50x+ 12 ∈ O(x5).

We also don’t care about the base of logs in asymptotic notations:

loga (n) = loga (b) logb (n)

=
1

logb (a)
· logb (n)

= k logb (n)

so the base only affects the constant in the front which is discard by the asymptotic notation. Next, we
give a sufficient (but not necessary) condition to test the asymptotic behaviour of a function:

Consider two functions, f(n) and g(n).

Suppose

lim
n→∞

f(n)

g(n)
→ a

If,

• a = 0, then f(n) ∈ O(g(n))

• a =∞, then f(n) ∈ Ω(g(n))

• a ∈ (0,∞), then f(n) ∈ Θ(g(n))

Applying a concave function, such as log, to both f(n) and g(n) does not change the asymptotic rela-
tionship between them.

Example. Is 2log(log(n))
3 ∈ Ω (

√
n)?

f(n) = 2log(log(n))
3

g(n) =
√
n

f∗(n) = log(log(f(n)))

= log
(
log

(
2log(log(n))

3
))

= log
(
log(log(n))3 log(2)

)
= log

(
log(log(n))3

)
+ log(log(2))

Combinatorial Optimisation | 2

MA252 1.1 Asymptotic Notation

= 3 log(log(log(n))) + log(log(2))

g∗(n) = log log(g(n))

= log
(
log

(√
n
))

= log

(
1

2
log(n)

)
= log(log(n)) + log

(
1

2

)
lim

n→∞

f∗(n)

g∗(n)
= lim

n→∞

3 log(log(log(n))) + log(log(2))

log(log(n)) + log
(
1
2

)
Let N = log(log(n)). As n→∞, N →∞.

= lim
N→∞

3 log(N) + log(log(2))

N + log
(
1
2

)
= lim

N→∞

3 log(N)

N + log
(
1
2

) + lim
N→∞

log(log(2))

N + log
(
1
2

)
= lim

N→∞

3 log(N)

N + log
(
1
2

)
As N →∞, 3 log(N)→∞ and N + log

(
1
2

)
→∞, so apply l’hopital’s rule.

= lim
N→∞

3

N

= 0

So 2log(log(n))
3 ∈ O (

√
n), and 2log(log(n))

3

/∈ Ω (
√
n).

Example. Bubble sort.

To sort a list using bubble sort, we check the first two elements of the list, and swap them, if they are out
of order. Then, we move along one, and check two elements again, then repeat until we reach the end of
the list, where we start another pass. Once we pass through the list without performing any swaps, we
know that the list is sorted.

Algorithm 1 Bubble Sort

1: procedure bubbleSort(A) ▷ Input array
2: n←len(A)
3: repeat
4: swapped = false
5: for i = 1 to n− 1 do
6: if A[i− 1] > A[i] then ▷ Check if the elements are out of order
7: (A[i− 1],A[i]) ← (A[i],A[i− 1]) ▷ Swap elements
8: swapped = True
9: end if

10: end for
11: until swapped = False
12: return A ▷ Return the sorted list
13: end procedure

The comparison and swapping takes Θ(1) time, but runs (n− 1) times due to the for loop. The repeat
statement will also run the for loop (n− 1) times, so overall, the algorithm takes Θ((n− 1)2) = Θ(n2).

Combinatorial Optimisation | 3

MA252 1.2 Master Theorem

One way to remember this result is to think about what happens if the smallest element is in the last
place. Every time it is swapped, it only moves one place back, so (n − 1) passes are required, each one
taking Θ(n) time, giving Θ(n2).

1.2 Master Theorem
Master Theorem: For an algorithm that has complexity that obeys the equation,

T (n) = aT
(n
b

)
+Θ(nd), T (c) = Θ(1)

we have,

T (n) ∈


Θ(nd) a < bd

Θ(nd · log n) a = bd

Θ(nlogb a) a > bd

Example. Merge sort.

In merge sort, we divide the list into halves, then run the algorithm again on each half, returning the
list once the list is length 1. Then, we merge the sorted sublists together until only one list remains.

Algorithm 2 Merge Sort

1: procedure mergeSort(A) ▷ Input array
2: n←len(A)
3: if n ≤ 1 then
4: return A ▷ If the list only contains one element, it is already sorted
5: end if
6: left← []
7: right← []
8: for i = 1 to n do
9: if i < n

2 then
10: append(left) ▷ Split the list into two sublists, left and right
11: else
12: append(right)
13: end if
14: end for
15: left←mergeSort(left) ▷ Sort the two sublists
16: right←mergeSort(right)
17: return merge(left,right) ▷ Merge the two sorted sublists together
18: end procedure

where the merge subroutine combines two sorted lists into one sorted list in linear time.

The algorithm takes

T (n) = T
(⌊n

2

⌋)
︸ ︷︷ ︸

Sort left

+T
(
n−

⌊n
2

⌋)
︸ ︷︷ ︸

Sort right

+Θ(n)︸ ︷︷ ︸
Merge

, n > 1

and we know T (1) = Θ(1), as the algorithm just returns the list for an array of length 1, taking constant
time.

∼ 2T
(⌊n

2

⌋)
+Θ(n)

Combinatorial Optimisation | 4

MA252 Graph Theory

So, using the Master theorem, we have a = 2, b = 2, d = 1, so,

= Θ(n log n)

2 Graph Theory

2.1 Minimal & Maximal Elements
If for some x, y ≤ x only if y = x, then x is minimal. Or equivalently, x is minimal if there does not
exist any y such that y < x. A partial order may have any number of minimal elements, including none.
For example, the integers have no minimal element, the naturals have one minimal element, 0, and a set
with k mutually incomparable elements has k minimal elements.

If an element x satisfies x ≤ y for all y, then x is a minimum. A partial order may have at most one
minimum, such as 0 in the naturals, but can also have none at all, either because it contains an infinite
descending chain like with the integers, or because it has more than one minimal element. Any minimum
element is also minimal.

We define maximal and maximum elements similarly, as elements that are not less than any other element
and elements that are greater than all other elements, respectively. Again, maximum elements are also
maximal.

While these definitions seem similar, they are distinct, elements can be maximal, but not maximum. For
example, consider the family of all subsets of N with at most three elements, ordered by ⊆. Then, the
set {0,1,2} is a maximal element of this family, because it’s not a subset of any larger set, but it’s not a
maximum, because it’s not a superset of {3} (and similarly for any other three-element set).

2.2 Basic Definitions & Theorems
A graph, G, is represented by V , a set of vertices or nodes, and E, a set of pairs of vertices, called edges
or arcs, and we write G = (V,E). If we are using multiple graphs at once, we can refer to the vertex
(edge) set of a graph G by writing V (G) (E(G)), but when the context is clear, we will often write things
like G ∪ v to mean the graph formed by adding the vertex v to the graph G.

If the edge pairs are ordered, the graph is directed or oriented, and can also be referred to as a digraph.

A vertex and an edge are incident if the vertex is at either end of the edge. The degree, valency or order
of a vertex is the number of edges incident to it. The indegree and outdegree of a vertex of a digraph is
the number of edges pointing into and out from the vertex. A vertex of degree 1 is called a leaf. If every
vertex of a graph have the same degree k, then the graph is said to be k-regular.

The degree sequence of a graph is a sorted list of its vertex degrees. If a sequence of number is the degree
sequence of some graph, it is graphical. For example, 3, is not a graphical sequence, as there is no graph
with a single node of degree 3, while 2,2,2 is a graphical sequence, because the triangle graph has 2,2,2
as a degree sequence.

For a vertex x ∈ V , we define N(x) = {y ∈ V : (x,y) ∈ E} to be the neighbourhood of x. The degree of
x can then also be written as deg(x) = |N(x)|.

An edge that starts and ends at the same vertex is called a loop. If multiple copies of the same edge pair
exists in the edge set, then the edges are called parallel edges.

A graph that does not contain loops or parallel edges is called a simple graph. A graph that can contain
parallel edges and loops is a multigraph.

If each edge also has a number associated with it (the weight of the edge), the graph is a weighted graph.
We write (G,w) for a weighted graph, where G is the underlying unweighted graph, and w is a function

Combinatorial Optimisation | 5

MA252 2.2 Basic Definitions & Theorems

that maps edges to weights. When we write w(S), where S ⊆ G (or S ⊆ E(G)), we mean the sum of
the weights of the edges of S,

∑
e∈V (S) w(e) (or

∑
e∈S w(e), respectively).

A walk is a route through a graph. A walk is closed if the first and last vertices are the same, and open
otherwise. A path is a walk in which no vertex is visited more than once. A trail is a walk in which no
edge is visited more than once. A cycle is a path in which the ending and starting vertex are the same.
A ray is an infinite path that starts at a vertex, then travels through infinitely many other vertices.

A Hamiltonian cycle is a cycle that visits every vertex. An Eulerian walk is a trail which traverses every
edge. An Eulerian circuit is both a trail and cycle which traverses every edge.

Theorem (Euler). An Eulerian circuit exists if and only if every vertex is of even degree.

Corollary 2.0.1. An Eulerian walk exists if and only if there are at most two vertices of odd degree.

A graph that admits an Eulerian walk is traversable or semi-Eulerian. A graph that admits an Eulerian
circuit is Eulerian.

Two vertices are connected if there is a path between them. Two vertices, u and v, are adjacent if they
are connected by an edge, so (u,v) ∈ E. u and v are also called neighbours. In a directed graph, the
in-neighbours of a vertex v, are all vertices u such that (u,v) ∈ E, and the out-neighbours are all vertices
u such that (v,u) ∈ E.

N(v) represents the set of neighbours of v, but does not include v itself. This notation can also be used
on sets of vertices to represent the set of neighbours of that set of vertices.

A path graph, Pn, is a graph consisting of a sole path, without cycles. That is, a line of nodes, with a single
path/trail running through it. Symbolically, the path graph is a graph on n nodes, V = {v1, · · · ,vn}
with E = {(vi,vi+1) : i ∈ [1,n− 1]}.

A cycle graph, Cn, is a graph consisting of a sole cycle.

A complete graph, Kn, is a graph on n nodes with every possible edge included once.

A tournament is a directed complete graph. If an edge points from a vertex a to a vertex b, then a
dominates b. If D = (V,E) is a tournament, and S ⊂ V with |S| = k, then S is a k-strong set if for every
v ∈ V \ S, there exists a u ∈ S such that (u,v) ∈ E. In other words, every vertex not in S is dominated
by at least one vertex in S.

A bipartite graph is a graph that has a vertex set that can be partitioned into two subsets, commonly
denoted L and R, such that for, every edge, (u,v) ∈ E either u ∈ L and v ∈ R or u ∈ R and v ∈ L. If a
graph G = (V,E) has partites L and R, we also write G = (L ∪R,E) to represent this data.

The complete bipartite graph Kn,k is the graph with two vertex partites of cardinality n and k with all
possible edges between them. K2,2 = C4. We also call a graph K1,n a star graph, and in particular, K1,3

is the claw graph.

For all k ∈ N, there exists a tournament on n ∈ N vertices without a k-strong set.

A graph is connected if every pair of vertices is connected.

A graph is a tree if it does not contain a cycle. An disconnected tree graph may also be called a forest.
A directed forest is an arborescence. Every tree is bipartite.

A tree is rooted by distinguishing a vertex to be the root. From the root, a natural orientation of the
edges can be assigned (i.e. pointing away or towards the root), forming a directed rooted tree. The
maximum distance from the root to any leaves in the tree is called the height of the tree. If two nodes
u and v are adjacent in a rooted tree, with u closer to the root, then we say that u is the parent of v, or
that v is the child of u. If two vertices have the same parent node, then they are sibling nodes.

Combinatorial Optimisation | 6

MA252 2.2 Basic Definitions & Theorems

Given a graph G, we can delete a vertex by removing a vertex and removing all edges incident to it. We
can similarly delete an edge by removing it. More interestingly, we can contract an edge by removing that
edge, then combining the two incident vertices, such that every edge connecting to one of the original
vertices connects to the new joined vertex (note that if one of several parallel edges are contracted, all
the remaining parallel edges become loops on the joined vertex).

A subgraph of a graph G is a graph whose vertices and edges all belong to G. A subgraph is induced
if every edge that can be included is included. In other words, an induced subgraph can be obtained
by deleting vertices in G, but not edges. Given a graph G, and a subset U ⊆ V (G), the subgraph of G
induced by U is denoted G[U].

A spanning tree is a subgraph that contains every vertex of the original graph, and is also a tree. A
connected component of G is a maximal (with respect to inclusion) connected subgraph of G.

A subset of vertices S ⊆ V is an independent set of the graph if there are no edges between any pair
of vertices in S (this allows us to alternatively characterise trees as graphs whose vertex sets can be
partitioned into two independent sets). Conversely, a clique is a subset of pairwise adjacent vertices.
More generally, a l-clique is a subgraph that is a complete graph on l vertices. The independence number
is the size of a maximum independent set, while the clique number is the size of a maximum clique.

Two graphs, G = (V,E) and H = (W,F) are isomorphic if there exists a bijective function, ϕ : V → W
such that if (v1,v2) ∈ E, then ϕ(v1),ϕ(v2) ∈ F , and vice versa. If such a function exists, we write G ∼= H.
The best known algorithm to determine whether two given graphs are isomorphic is O(nlogn).

A graph G is called H-free if no induced subgraph of G is isomorphic to H.

The complement of a graph, G = (V,E), denoted Ḡ or Gc is the graph (V,E′), where E′ is the set of
edges over V that are not in E. A graph is self-complementary if it is isomorphic to its complement.

A matching over a graph G = (V,E) is a set of edges M ⊆ E such that no vertex is incident to more
than one edge. The matching number is the size of a maximum matching. A matching in which every
vertex is incident to an edge is a perfect matching. A perfect matching is only possible on graphs with
an even number of vertices.

An alternating chain with respect to a matching, M , is a path whose edges alternate between matched
and unmatched edges. M admits an alternating chain if and only if M is not maximal.

A vertex cover is a subset, S ⊆ V such that every edge in E is incident to at least one vertex in S.

For a graph, G = (V,E), if M ⊆ E is a matching and S ⊆ V is a vertex cover, then |M | ≤ |S|. This also
implies that the size of a maximal matching is at most the size of a minimal vertex cover.

Consider G = (V,E) and let S ⊆ V . S is a vertex cover of G if and only if V \ S is an independent set.

The distance between two vertices, u and v, written as d(u,v), is the length of the shortest path from u
to v. On an undirected graph,

• d(u,v) = 0↔ u = v (Point separating);

• d(u,v) = d(v,u) (Symmetry);

• d(u,v) + d(v,w) ≥ d(u,w) (Triangle inequality).

thus satisfying the requirements for a metric. A graph, along with this definition of a distance function,
is a metric space.

Theorem 2.1. A tree on n nodes has n− 1 edges.

Proof. Let P (n) be the statement that every tree on n nodes has n− 1 edges. P (1) holds, as the trivial
graph has 0 = 1− 1 edges. Assume that P (n) holds for some fixed arbitrary value of n ≥ 1.

Combinatorial Optimisation | 7

MA252 2.3 Graph Traversal

Let T be a tree with n+1 nodes. As T is a tree, it cannot contain cycles, so at least one leaf node exists.
Remove the leaf, and the edge incident to it. The new graph is a tree with n nodes. By the induction
hypothesis, this new graph has n− 1 edges, so it follows that T has n edges. Thus, P (n) =⇒ P (n+1),
completing the induction. ■

Corollary 2.1.1. Every connected graph has a spanning tree. Every connected graph over n nodes has
at least (n− 1) edges, with exactly (n− 1) edges if and only if the graph is a tree.

A cut is a partition of the vertex set of a graph into two disjoint sets, L and R. An edge is in the cut
(L,R) if it connects a vertex in L with a vertex in R. The set of edges in the cut C is denoted δ(C). The
value of the cut C is the number of edges in the cut, |δ(C)|.

If G = (V,E) is a graph, then there exists a cut in G with value at least |E|
2 .

The deletion of any edge from a tree partitions it into two connected components.

Lemma (Euler’s Handshaking Lemma). In any undirected graph (V,E), the sum of the degrees of the
vertices is equal to twice the number of edges.∑

v∈V

deg(v) = 2|E|

Proof. Every edge connects two vertices, each contributing exactly 2 to the sum of the degrees. ■

Corollary 2.1.2. The number of odd degree vertices is even.

Corollary 2.1.3. Every tree on n ≥ 2 vertices has at least two leaves.

Theorem 2.2. The following statements are equivalent for any connected graph G = (V,E):

1. G is a tree;

2. G has no cycles;

3. Any two vertices of G are connected by a unique path;

4. G′ = (V,E \ {e}) is disconnected for any e ∈ E;

5. |E| = |V | − 1

Proof. (1)↔ (2) by definition.

(2)↔ (3) because, if the path is not unique, then the two paths together form a cycle.

(3)↔ (4) because, if G′, then the endpoints of e would be connected in G by two different paths.

(5)↔ (1) by Theorem 2.1. ■

2.3 Graph Traversal
Given a finite simple graph G and a vertex v ∈ V , also called the root, we wish to find a set R ⊆ V of
vertices reachable from v (i.e. for every u ∈ R, there exists a path from v to u), and a set T ⊆ E of edges
such that (S,T) is a tree.

The two classical algorithms for this are depth first search (DFS) and breadth first search (BFS).

DFS traverses the depth of any particular path as far as possible at each step. The algorithm starts
from the root, moving from the current vertex to an adjacent unvisited vertex, continuing until there are
no unvisited nodes left. Then, the algorithm backtracks along previously visited nodes in reverse order
until one of these visited nodes has unvisited neighbours, at which point it proceeds down the new path

Combinatorial Optimisation | 8

MA252 2.3 Graph Traversal

as far as possible again. BFS starts at the root, and explores all nodes at a given depth, before moving
on to nodes at the next depth level.

These algorithms perform the same task, but are suited to different applications. For instance, if you
are building a chess AI, you might use a graph traversal algorithm to explore the possible graph of
future game states. In this case, BFS would look at all possible first moves, before exploring all possible
combinations of first and second moves. On the other hand, a naive application of DFS would almost
immediately get stuck in an infinite branch and never backtrack.

DFS can be given recursively, but we give a stack based implementation here:

Algorithm 3 Depth First Search

1: vertices = []
2: edges = []
3: procedure dfs(G,v)
4: v.visited = true
5: S = stack()
6: S.push(v)
7: while S is not empty do
8: parent = v
9: v = S.pop()

10: if v.visited == false then
11: v.visited = true
12: for u ∈ N(v) do
13: S.push(u)
14: end for
15: edges.append((parent,v))
16: end if
17: end while
18: for v ∈ V do
19: if v.visited == true then
20: vertices.append(v)
21: end if
22: end for
23: return (vertices,edges)
24: end procedure

Note that the checking of whether a vertex has been visited is deferred until after the vertex is popped
from the stack.

When giving a proof for an algorithm, we need to show termination, and correctness; that the algorithm
will terminate within a finite number of steps, and that the algorithm works as intended, respectively.

We give a proof of DFS.

Proof. There are finitely many vertices, so the algorithm will terminate. Next, we prove correctness. At
each pass of the while loop, the visited vertices form a tree by induction. Suppose there exists a vertex
t ∈ V \ {R} that is reachable from the root v, and let P be the path between v and t. Since v ∈ R and
t ̸∈ R, there must exist two vertices x and y such that x ∈ R, y ̸∈ R, and (x,y) ∈ E. Since x ∈ R, it must
have been visited by the algorithm and hence have been in the stack. But then, all the neighbours of x,
including y, would have been pushed onto the stack and hence marked visited (if not already visited),
contradicting that y ̸∈ R, and hence P and t do not exist. ■

Combinatorial Optimisation | 9

MA252 2.3 Graph Traversal

BFS can similarly be given recursively, but we give a queue based implementation here:

Algorithm 4 Breadth First Search

1: vertices = []
2: edges = []
3: procedure bfs(G,v)
4: v.visited = true
5: S = queue()
6: S.enqueue(v)
7: while S is not empty do
8: parent = v
9: v = S.dequeue()

10: v.visited = true
11: for u ∈ N(v) do
12: if u.visited == false then
13: S.enqueue(u)
14: end if
15: end for
16: edges.append((parent,v))
17: end while
18: for v ∈ V do
19: if v.visited == true then
20: vertices.append(v)
21: end if
22: end for
23: return (vertices,edges)
24: end procedure

The proof of correctness is similar to the proof for DFS.

Theorem 2.3. A BFS-tree contains a path from the root v to every vertex reachable from v, which is
shortest in G.

Proof. Let dG(u,v) denote the distance between u and v in a graph G. Suppose (S,T) is the tree returned
by the BFS algorithm.

Suppose that, when the algorithm ends, there are vertices x ∈ S such that dG(v,x) < d(S,T)(v,w).
Without loss of generality, let w denote the vertex closest to v with this property.

Let P be a shortest path from v to w in G, and let (u,w) be the last edge in P . Then, by assumption,
dG(v,u) = d(S,T)(v,u), and hence (u,v) ̸∈ T .

d(S,T)(v,w) > dG(v,w)

= dG(v,u) + 1

= d(S,T)(v,u) + 1

This implies that u was enqueued earlier than w, since vertices are enqueued according to their distance
from the root in (S,T). In particular, w was not enqueued until after u was dequeued, since vertices
are also dequeued in order with nondecreasing distance. But, w must have been enqueued via the edge
(u,w) when u was enqueued, contradicting that (u,w) ∈ T . It follows that the assumption that there
exists vertices x ∈ S such that dG(v,x) < d(S,T)(v,w) is false. ■

Combinatorial Optimisation | 10

MA252 2.4 Minimum Cost Spanning Tree

Theorem 2.4. Graph traversal algorithms can be implemented in a graph G with |V | = n vertices and
|E| = m edges to run in O(n +m) time. Furthermore, the connected components of G can be detected
in linear time.

2.4 Minimum Cost Spanning Tree
Given a finite connected weighted simple graph G, we wish to find a spanning tree T of G such that the
total weights of the edges in T is minimal. This is the minimum cost spanning tree (MST) problem.

Let (G,w) be a weighted graph.

Theorem 2.5. The following statements are equivalent for any spanning tree T in G:

1. T is an optimum solution.

2. For every edge f = (x,y) ̸∈ E(T), no edge on the path from x to y in T has higher cost than f .

3. For every edge e ∈ E(T), e is a minimum cost edge of δ(V (C)), where C is a connected component
of T \ {e}

Proof. (1)→ (2): Suppose T is optimum, but there is an edge f = (x,y) ̸∈ E(T), and an edge e on the
path connecting x to y in T such that w(f) < w(e). Then (T \ {e}) ∪ {f} is a spanning tree with lower
cost.

(2)→ (3): Suppose (3) does not hold, so there exists an edge f = (x,y) ∈ δ(V (C)) such that w(f) < w(e)
Observe that e is the only edge in δ(V (C)) in T , so f ̸∈ E(T), contradicting (2).

(3) → (1): Suppose T satisfies (3), but is not optimum. Let T ′ be an optimum tree maximising
|E(T)∩E(T ′)|, and suppose there exists e ∈ E(T) \E(T ′). Let C be a connected component of T \ {e},
so e ∈ δ(C). Clearly, T ′∪{e} contains a cycle. Let f ∈ δ(C) be any other edge of the cycle. (T ′\{f})∪{e}
is a spanning tree, and since T ′ is optimum, w(f) ≤ w(e). However, we have w(e) ≤ w(f) from (3), so
w(f) = w(e), and hence (T ′ \ {f}) ∪ {e} is an optimum spanning tree. But this tree has more edges in
common with T than T ′. This contradiction shows that E(T) ⊆ E(T ′), and hence E(T) = E(T ′), so T
is optimum. ■

The two classical algorithms here are Kruskal’s algorithm and Prim’s algorithm.

Algorithm 5 Kruskal’s Algorithm
1: Sort the edges into ascending order of weight.
2: Select an edge of least weight to start the tree.
3: Consider the next edge of least weight. If it would form a cycle with the edges already included,

move to the next edge. Otherwise, include the edge.
4: Repeat the previous step until all vertices are connected (or equivalently, if all edges remaining would

form a cycle).

Proof. The algorithm terminates as G is finite. Correctness is proven in two parts: that the graph T
produced is indeed a spanning tree, and that T is minimal.

T cannot have a cycle, as edges that would form a cycle are excluded by definition. T also cannot be
disconnected, since the first encountered edge that joins disconnected components of T would have been
added by the algorithm. Thus, T is a spanning tree of G.

Let P be the statement that if F is the set of edges chosen at any step of the algorithm, then there is
some minimal spanning tree T that contains F and none of the edges rejected by the algorithm.

Clearly, P holds at the beginning when F = ∅ as any minimal spanning tree will suffice. Assume that P
holds for some arbitrary non-final step of the algorithm.

Combinatorial Optimisation | 11

MA252 2.4 Minimum Cost Spanning Tree

If the next chosen edge e is in T , then P also holds for F ∪ {e}. Otherwise, if e ̸∈ E(T), then T ∪ {e}
has a cycle by construction, C. This cycle contains edges which are not in F , since e does not form a
cycle when added to F , but does in T . Let f ∈ C \ F be such an edge. Note that f ∈ T , and by P ,
has not been considered by the algorithm. f must therefore have a weight at least as large as e. Then,
(T \ {f}) ∪ {e} is a tree with the same (or less) weight as T that contains F ∪ {e}, so P also holds in
this case.

By induction, P holds when F is itself a spanning tree, which is possible only if F also minimum. ■

Theorem 2.6. For a graph G = (V,E), a standard implementation of Kruskal’s algorithm runs in
O(|E| log |E|), or equivalently, O(|E| log |V |) time.

Remark. These time classes are equivalent as |E| is at most |V |2, and log |V |2 = 2 log |V | ∈ O(log |V |).

Proof. Sorting the edges takes O(|E| log |E|) time.

Selecting an edge of least weight is just returning the first element of a sorted list, which takes constant
O(1) time.

Checking if this edge creates a cycle is equivalent to checking if the edge connects two vertices that lie in
different trees. We track which tree each vertex lies in using a union-find structure (similar to a disjoint
union in set theory), which takes O(|V |) operations to initialise. Then, during runtime, in the worst
case, every edge needs to be iterated over, and for each edge, we perform two tree lookups, and possibly
a union, which takes at most O(|E| log |V |) time.

Thus, the total time complexity is O(|E| log |E|) = O(|E| log |V |). ■

Algorithm 6 Prim’s Algorithm
1: Select any vertex to start the tree.
2: Select an edge of least weight that joins a vertex already in the tree to a vertex not yet in the tree.
3: Repeat the previous step until all vertices are connected (or equivalently, if all edges remaining would

form a cycle).

Proof. The proof that the produced tree T is spanning is almost identical to that of Kruskal’s algorithm.

Condition (3) of Theorem 2.5 guarantees that T is optimum. ■

Theorem 2.7. Given the adjacency matrix of a graph G = (V,E), a simple implementation of Prim’s
algorithm runs in O

(
|V |2

)
time.

Proof. We can find the minimum weight edge to add by linearly searching the adjacency matrix, which
has |V |2 entries, giving O

(
|V |2

)
time complexity. ■

Remark. Using binary or Fibonacci heaps and adjacency lists, Prim’s algorithm can be improved to run
in O((|V |+ |E|) log |V |) = O(|E| log |V |) and O(|E|+ |V | log |V |) time, respectively.

Kruskal’s algorithm will find a spanning forest if G is disconnected, but Prim’s algorithm will only find
the tree spanning the connected component containing the starting vertex. Prim’s algorithm can be
extended to find spanning forests by iterating over the vertices.

Combinatorial Optimisation | 12

MA252 2.5 Shortest Path Algorithm

2.4.1 Number of Spanning Trees

How many trees are there with n labeled vertices, up to isomorphism? Or equivalently, how many
spanning trees does the complete graph Kn have?

On 3 vertices, the spanning tree is unique. On 3 vertices, the spanning tree is a path P3 on the three
nodes, and there are 3 ways to permute the order in which the path passes through the nodes, giving 3
spanning trees. On 4 vertices, there are 4!/2 trees that are paths, for similar reasons, and 4 trees that
are stars, giving 16 total. On 5 vertices, there are 5!/2 copies of P4, 5 stars with 4 leaves, and 5 · 4 · 3
“stars” with 3 leaves, where one leaf is a chain of two vertices, giving 125 total.

Is there a pattern, or a general formula?

Theorem (Cayley). There are nn−2 trees on n labelled vertices.

Proof. (Prüfer, 1918). For a tree T , consider its vertex set V = {1,2, . . . ,n}. Note that the number of
sequences of length n−2 from N is nn−2. We will construct a bijection from the set of trees on n labelled
vertices and the set of these sequences.

We convert a labelled tree into a sequence of length n− 2 by removing the lowest labelled leaf until two
vertices remained; each time a leaf is removed, its neighbour is added to the sequence.

To convert a sequence S = (t1,t2, . . . ,tn−2) into a labelled tree T , let s1 be the smaller vertex in V \ S,
and we join s1 to t1 with an edge. Then, let s2 be the smaller vertex in V \ {s1} \ S, and join s2 to
t2. Repeat this process until the elements of S have been exhausted, at which point n2 edges have been
added. Join the two vertices in V \ {s1,s2, . . . ,sn−2} to complete the tree. ■

2.5 Shortest Path Algorithm
Given a weighted digraph (G,w) and two vertices s,t ∈ V (G), how can we find the shortest path from s
to t (or decide that no such path exists).

If G is simple, unweighted and undirected, this can be solved using BFS by picking s to be the root node,
as shown in Theorem 2.3.

Note that if a negative cycle exists, then there is no solution to this problem, as the path can be made
arbitrarily negative by traversing the cycle arbitrarily many times.

If we have an instance of this problem where the weights are non-negative, then we can solve this problem
with Dijkstra’s algorithm.

1. Mark all nodes as unvisited.

2. Assign to every node a tentative distance; set this value to 0 for the starting node, and infinity to
all other nodes. As the algorithm progresses, this value represents the length of the shortest path
from the starting node to the given node discovered. Since no path is known initially, (apart from
the starting node, with path length 0), all other tentative distances are set to infinity.

3. Also assign each node a previous node, representing the vertex preceding it in the path. At the
beginning, this value is undefined for each vertex.

4. Set the starting node as the current node.

5. For the current node, consider all of its unvisited neighbours, and calculate their tentative distances
through the current node. That is, the add the tentative distance of the current node to the weight
of the edge connecting the current node to that neighbour. If this tentative distance is lower than
the one currently assigned to that neighbour, overwrite it, and also set the previous node of the
neighbour to be the current node.

6. Once all neighbours have been visited, mark the current node as visited.

Combinatorial Optimisation | 13

MA252 2.5 Shortest Path Algorithm

7. If the destination node has been marked visited or the smallest tentative distance among the
unvisited nodes is infinity (this happens if the graph is disconnected and no path exists from the
starting node to infinite tentative distance node), then terminate the algorithm.

8. Otherwise, select the unvisited node with the minimum tentative distance as the new current node,
and return to step (5).

This method of approximating and updating tentative distances is known as a relaxation method.

Note that Dijkstra’s algorithm does not work on digraphs with negative weights, as, once a vertex is
marked as visited, it is never searched again, as it assumes that the path developed to this vertex is most
efficient. However, this is not necessarily true with negative weights, as an overall more efficient longer
path with negative weights may exist that is locally less efficient.

a

b c

2 1

−3

For instance, in this graph, starting at a, the algorithm would search first search c, then declare it visited.
Then, it would search b, and discard the path to c, as it is already marked visited.

Algorithm 7 Dijkstra’s Algorithm

1: procedure bfs((G,w), start, end)
2: for v ∈ V (G) do
3: v.visited = false
4: v.distance =∞
5: v.previous = null
6: end for
7: start.distance = 0
8: current = start
9: while end.distance =∞ do

10: for v ∈ N(current) do
11: if v.unvisited = false then
12: newDist = current.distance + w(current,v)
13: if newDist < v.distance then
14: v.distance = newDist
15: v.previous = current
16: else
17: continue
18: end if
19: end if
20: end for
21: current.visited = true
22: if min

{v:v.visited=false}
(v.distance) =∞ then

23: break
24: end if
25: current = min

{v:v.visited=false}
(v.distance)

26: end while
27: end procedure

Combinatorial Optimisation | 14

MA252 2.5 Shortest Path Algorithm

We can also run Dijkstra’s algorithm without giving a destination node, in which case, we change the
termination condition to when all nodes have been visited, or if the smallest tentative distance among
the unvisited nodes is infinity. This alternative version would find the shortest path from a source vertex
to all other vertices.

Proof. G is finite, so the algorithm always terminates. Now, we show correctness.

To reduce the mixing of notation, for the purposes of this proof only, let D(v) = v.distance and p(v) =
v.previous. Also let R denote the set of visited vertices, and let P[a,b] denote the restriction of a path P
to between vertices a and b in that path.

We will show that at any step of the algorithm, if a node v is the current node and s is the starting node,
then,

1. D(v) = d(G,w)(s,v)

2. If D(v) <∞, then the path v,p(v),p(p(v)), . . . contains s and is furthermore the shortest path from
s to v.

(1): We induct on the number of while loop iterations. In the first iteration, the current node is s, and
D(d) = 0 = d(s,s).

Suppose a vertex v is selected, but the shortest path P from s to v has length w(P) < D(v). If all
vertices of P (except for v) have been visited, then d(v) = w(P) by induction. Otherwise, let y be the
first unvisited vertex of P , and let x = p(y) be its predecessor.

s x y v

D(y) ≤ D(x) + w
(
(x,y)

)
= d(G,w)(s,x) + w

(
(x,y)

)
= w(P[s,x]) + w

(
(x,y)

)
≤ w(P)

< D(v)

contradicting the choice of v to be the current vertex.

(2): If D(v) <∞, then D(v) was decreased at some point, where p(v) was also created.

The values of D(v) and p(v) can change several times before v is visited, but after the last change,
D(v) = d(G,w)(s,v) by (1). Also, the sequence p(v),p(p(v)), . . . contains s and defines a shortest path
from s to p(v) by induction, since p(x) is visited for all visited x (with p(v) being the base case). Thus,
the sequence v,p(v),p(p(v)), . . . contains s and defines a shortest path from s to v. ■

This implementation of Dijkstra’s algorithm runs in Θ(|V |2) time, where |V | is the number of vertices in
the graph. However, this can be optimised with the use of Fibonacci heap min-priority queues, running
in Θ(|E|+ |V | log |V |) time. This variant is asymptotically the fastest known single-source shortest-path
algorithm for arbitrary directed graphs with unbounded non-negative weights.

Another algorithm, is the Bellman-Ford algorithm. Bellman-Ford is slower than Dijkstra, but it works
on a larger class of problems. Notably, it can handle graphs that contain negative weights, and can also
detect negative cycles.

Like Dijkstra’s algorithm, Bellman-Ford proceeds by relaxation. In Dijkstra’s algorithm, this is done
greedily by selecting the closest vertex that hasn’t been searched yet in a priority queue. Bellman-Ford
just relaxes all edges, and does so |V | − 1 times.

Bellman-Ford also requires a cycle detection subroutine, of which O(|V |) solutions are known.

Combinatorial Optimisation | 15

MA252 2.5 Shortest Path Algorithm

Algorithm 8 Bellman-Ford

1: procedure bellmanFord((G,w), start)
2: for v ∈ V (G) do
3: v.visited = false
4: v.distance =∞
5: v.previous = null
6: end for
7: start.distance = 0
8: current = start
9: i = 0

10: while i ≤ |V | − 1 : do
11: for (u,v) ∈ E(V) do
12: if u.distance + w((u,v)) < v.distance then
13: v.distance = u.distance + w((u,v))
14: v.previous = u
15: end if
16: end for
17: i = i+ 1
18: end while
19: for (u,v) ∈ E(G) do
20: if u.distance + w((u,v)) < v.distance then
21: negativeLoop = [v,u]
22: i = 0
23: while i ≤ |V | − 1 : do
24: u = negativeLoop[0]
25: for (u,v) ∈ E(G) do
26: if u.distance + w((u,v)) < v.distance then
27: negativeLoop = [v].append(negativeLoop)
28: end if
29: end for
30: i = i+ 1
31: end while
32: return cycleDetect(negativeLoop)
33: end if
34: end for
35: end procedure

Proof. G is finite, so the algorithm always terminates. Now, we show correctness.

To reduce the mixing of notation, for the purposes of this proof only, let D(v) = v.distance.

We induct on the number of iterations n of the for loop in line 11. In the zeroth iteration, the starting
vertex has distance 0, which is correct. For other other vertices u, D(u) = ∞, which is also correct
because there is no path from source to u with 0 edges.

For the base case, consider when a vertex’s distance is updated by D(v) = D(u) + w((u,v)). By the
induction hypothesis, D(u) is the length of a path from the starting vertex to u. Then, D(u) +w((u,v))
is the length of the path from the starting vertex to v that follows the path from the starting vertex to
u then to v.

Now, consider a shortest path P from the starting vertex to v with at most n edges. Let u be the last
vertex before v on this path. Then, the section of the path from the start to u is a shortest path from
the start to u with at most n− 1 edges, since if it were not, then there would be a path from the start to
u to which we could append the edge (u,v) to construct a path from the start to v strictly shorter than

Combinatorial Optimisation | 16

MA252 2.6 Network Flow

P , contradicting the choice of P . By the induction hypothesis, D(u) after n − 1 iterations is at most
the length of this path from the start to u. It follows that D(u) + w((u,v)) is at most the length of P .
In the nth iteration, D(v) is compared to D(u) + w((u,v)), and is set to that, if it is shorter. So, after
n iterations, D(v) is at most the length of P , which is the length of a shortest path from the start to v
with at most n edges, as required.

If there are no negative cycles, then every shortest path visits each vertex at most once, so in the for
loop on line 19, no further improvements can be made. Now, suppose no improvements can be made.
Then, for any cycle v1,v2, . . . ,vk−1, we have,

D(vi) ≤ D(vi−1 (mod k)) + w
(
(vi−1 (mod k),vi)

)
Summing over the cycle, the D(vi) and D(vi−1 (mod k)) terms cancel, leaving,

0 ≤
k∑

i=1

w
(
(vi−1 (mod k),vi)

)
so the cycle is non-negative. It follows that the algorithm returns a cycle if and only if it is negative. ■

Bellman-Ford runs in O(|V | · |E|) time.

A graph is locally finite if every vertex in the graph has finite degree.

Lemma (Kőnig). Suppose G is connected, infinite, and locally finite. Then, G contains a ray.

Proof. We give an inductive algorithm to generate such a ray.

Pick any vertex, v0 ∈ V (G). This vertex can be thought of a path of zero length, consisting of one vertex
and no edges. By the assumptions of the lemma, each of the infinitely many vertices of G can be reached
by a simple path that starts from v0.

Next, as long as the current path ends at some vertex vi, consider the infinitely many vertices that
can be reached by paths that extend the current path, and for each of these vertices, construct a path
to it that extends the current path. There are infinitely many of these extended paths, each of which
connects from vi to one of its neighbours, but vi only has finitely many neighbours. It follows from the
set theoretic variant of the pigeonhole principle that at least one of these neighbours is used as the next
step of infinitely many of these extended paths. Let vi+1 be such a neighbour, and extend the current
path along the edge from vi to vi+1. By construction, this extension preserves the property that infinitely
many vertices can be reached by paths that extend the current path.

Repeating this process for extending the path produces an infinite sequence of finite paths, each extending
the previous path in the sequence by one edge. The union of these paths gives the required ray. ■

Corollary 2.7.1. Every infinite tree contains either a vertex of infinite degree, or an infinite path.

Proof. If the tree is locally finite, the lemma above applies, and thus contains a ray. Otherwise, it is not
locally finite and contains a vertex of infinite degree. ■

2.6 Network Flow
A network (G,u,s,t) is a directed graph G with two distinguished nodes called the source node, s, and
the sink node, t, along with a function u : E(G)→ R≥0 called the edge capacity function.

A flow in a network (G,u,s,t) is a function f : E(G) → R≥0 such that f(e) ≤ u(e) for all e ∈ E(G):
that is, the flow over an edge cannot be higher than its capacity. This is called the capacity constraint.
A flow must also satisfy the skew symmetry constraint : f

(
(u,v)

)
= −f

(
(v,u)

)
. That is, the flow on an

edge from a vertex u to a vertex v is equivalent to the negation of the flow from v to u.

Combinatorial Optimisation | 17

MA252 2.6 Network Flow

A flow is integral if every edge is assigned an integer - that is, an integral flow is instead a function
f : E(G)→ Z.

A network equipped with a flow function is called a flow network.

Recall that a cut is a partition of a vertex set of a graph into two partites. If X ⊆ V (G), then X and
V (G) \ X partition V (G), thus defining a cut. Because this cut is determined entirely by X, we also
denote it by X. Recall further that an edge is in the cut if it connects a vertex in one partite to a vertex
in the other, and the set of edges in the cut X is denoted δ(X).

However, because G is directed, we can divide this set further. We let δ+(X) ⊆ δ(X) denote the set of
edges leaving X, and δ−(X) ⊆ δ(X) denote the set of edges entering X.

If X is a singleton set containing the sole vertex v, we abbreviate δ({v}) as δ(v).

We define the excess function xf : V → R by,

xf (v) :=
∑

e∈δ−(v)

f(e)

︸ ︷︷ ︸
flow received by v

−
∑

e∈δ+(v)

f(e)

︸ ︷︷ ︸
flow sent by v

A node v is said to be active if xf (v) > 0 (the node consumes flow), deficient if xf (v) < 0 (the node
produces flow), or conserving if xf (v) = 0. A conserving node is said to satisfy the flow conservation
rule. In flow networks, the source s is deficient and the sink t is active.

If every node apart from the source and sink is conserving, the flow is said to be a feasible flow. We only
consider feasible flows, and shorten the name to just flow.

An s-t-flow in (G,u,s,t) is a flow f such that xf (s) < 0, and xf (v) = 0 for all v ̸= s,t. The value of such
a flow is the excess at the sink t:

value(f) := xf (t)

or equivalently, the negative of the excess at the source s:

value(f) := −xf (s)

Given a network (G,u,s,t), the maximum flow problem is to find an s-t-flow of maximum value.

An s-t-cut is a δ+(A) for some A ⊆ V (G) such that s ∈ A, t ̸∈ A. A minimum s-t-cut is an s-t-cut of
minimum total capacity.

2.6.1 Residual Networks

Let (G,u,s,t) be a network. For an edge e = (x,y) ∈ E(G), let ←−e = (y,x) denote the reverse edge.

Let
←→
G be the graph contained from G by adding the reverse edge for every edge of G. Note that

←→
G

may be a multigraph, as there may now be parallel edges.

Given a network (G,u,s,t), and a flow f in it, the residual network (Gf ,uf ,s,t) is defined by,

• V (Gf) = V (G);

• E(Gf) =
{
e ∈ E

(←→
G

)
: uf (e) > 0

}
;

• uf (e) := u(e)− f(e) for e ∈ E(G);

• uf (
←−e) := f(e), where ←−e is a reverse edge.

Combinatorial Optimisation | 18

MA252 2.6 Network Flow

The residual network indicates the additional possible flow in the original network. If there is a path
from source to sink in the residual network, then it is possible to add flow. The value of an edge in the
residual graph is called the residual capacity, which is equal to the original capacity of the edge, minus
the current flow given by f . An f -augmenting path is a path from s to t in the residual network.

Let f be a flow, P be an f -augmenting path, and let 0 < γ ≤ min
e∈E(P)

(
uf (e)

)
.

We augment f along P by γ, by,

• Increasing f(e) by γ for each e ∈ E(P) ∩ E(G);

• Decreasing f(e) by γ for each ←−e ∈ E(P).

We now have enough machinery to tackle the maximum flow problem.

Algorithm 9 Ford-Fulkerson Algorithm

1: Set f(e) = 0 for all e ∈ E(G).
2: Find an f -augmenting path P . If none exist, then terminate the algorithm.
3: Compute γ := min

e∈E(P)

(
uf (e)

)
.

4: Augment f along P by γ, and return to line (2).

Lemma 2.8. For any A ⊂ V (G) such that s ∈ A and t ̸∈ A, and any s-t-flow f , we have,

1.
value(f) =

∑
e∈δ+(A)

f(e)−
∑

e∈δ−(A)

f(e)

2.
value(f) ≤

∑
e∈δ+(A)

u(e)

Note that (2) in the lemma above states that the value of a maximum s-t-flow cannot exceed the capacity
of a minimum s-t-cut.

Proof. (1):

value(f) = −xf (s)

=
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e)

Because xf (v) = 0 for all v ̸= s,

=
∑
v∈A

 ∑
e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e)


For each e = (x,y) with x,y ∈ A, f(e) appears once positively and once negatively, so,

=
∑

e∈δ+(A)

f(e)−
∑

e∈δ−(A)

f(e)

(2) follows from (1) by using 0 ≤ f(e) ≤ u(e) for all e ∈ E(G). ■

Theorem 2.9. An s-t-flow is maximum if and only if there is no f -augmenting path.

Combinatorial Optimisation | 19

MA252 2.6 Network Flow

Proof. If there is no f -augmenting path, then t is not reachable from s in Gf . Let R be the set of vertices
reachable from s in Gf . By the definition of Gf ,

∀e ∈ δ+G(R), f(e) = u(e)

else e ∈ Gf , in which case, there is a vertex not in R reachable from s. We also have,

∀e ∈ δ−G(R), f(e) = 0

else ←−e ∈ Gf , in which case, there is a vertex not in R reachable from s. Then, by (1) of the above
lemma, we have,

value(f) =
∑

e∈δ+(A)

u(e)

and hence by (2) of the above lemma, f is maximum. ■

Remark.

1. If we allow irrational capacities, the Ford-Fulkerson algorithm may not terminate at all.

2. Even in the case of integer capacities, the number of augmentations can be exponential.

3. The maximum flow problem admits a polynomial-time implementation.

Theorem (Max-Flow Min-Cut). In a network, the maximum value of an s-t-flow equals the minimum
capacity of an s-t-cut.

Theorem (Integral Flow). If each edge in a flow network has integer capacity, then there exists an
integral maximum flow.

Note that this theorem does not say that the value of the flow is an integer (which follows directly from
the max-flow min-cut theorem), but that the flow on every edge is an integer.

Theorem (Flow Decomposition). Let (G,u,s,t) be a network, and let f be an s-t-flow in G. Then, there
exists a family P ∗ of s-t-paths and a family C∗ of cycles in G, along with a function ω : P ∗∪C∗ → R≥0,
such that,

1.
f(e) =

∑
K∈P∗∪C∗

e∈K

ω(K)

2.
value(f) =

∑
k∈P∗

ω(K)

Moreover, if f is integral, then ω can be chosen to be integral.

Proof. We construct P ∗, C∗, and ω by induction on the number of edges with non-zero flow. Let
e0 = (v0,w0) be an edge with f(e0) > 0. If w0 = t, then we stop. Otherwise, there exists an edge
e1 = (w0,w1) with f(e1) > 0. If w1 = t r w1 = v0, then we stop. Otherwise, there exists an edge
e2 = (w1,w2) with f(e2) > 0. If w2 = t or w2 ∈ {v0,w0}, then we stop. Continuing this process, in at
most n steps, we either find a cycle, or reach vertex t. In the latter case, we repeat the procedure in the
other direction and either find a cycle, or reach vertex s. In either case, we find either a cycle L, or a
path L from s to t.

Set ω(L) = min
e∈L

(
f(e)

)
. For every e ∈ L, define f ′(e) := f(e)−ω(L), and for all e ̸∈ L, define f ′(e) := f(e).

There are strictly fewer edges of G with non-zero flow f ′, so, by the induction hypothesis, (1) and (2)
holds for the flow f ′.

Combinatorial Optimisation | 20

MA252 2.6 Network Flow

We show that (1) also holds for f . If e ̸∈ L, then (1) is valid for f , because in this case, f(e) = f ′(e). Let
e ∈ L, and denote the members of P ∗ ∪C∗ containing e by K1,K2, . . . ,Kt, where Kt = L. By induction,

f ′(e) =

t−1∑
i=1

ω(Ki)

and by definition, f ′(e) = f(e)− ω(L). Therefore,

f(e) = ω(L) + f ′(e)

= ω(Kt) +

t−1∑
i=1

ω(Ki)

=

t∑
i=1

ω(Ki)

so (1) holds for f .

Now, we show that (2) also holds for f . Suppose that L is a cycle. Then, G contains a cut δ(A) separating
s from t which does not cross L, and hence value(f) = value(f ′) by claim (1) of the above lemma. Since
(2) holds for f ′, we conclude it also holds for f in this case.

Now, suppose L is instead a path. Then,

value(f ′) =
∑

K∈P∗\{L}

ω(K)

=
∑

e∈δ+(A)

f ′(e)−
∑

e∈δ−(A)

f ′(e)

=
∑

e∈δ+(A)

f(e)−
∑

e∈δ−(A)

f(e)− ω(L)

= value(f)− ω(L)

and hence (2) holds for f . ■

Theorem (Menger (Edge Connectivity)). Let G be a graph (directed or undirected), and let s,t be two
distinct vertices of G. Let k ∈ N. Then, these two statements are equivalent:

1. There are k edge-disjoint s-t-paths in G.

2. After deleting any k − 1 edges from G, t is still reachable from s (e.g. G is connected).

If the latter property holds in a graph for all s,t, then the graph is said to be k-edge connected.

Proof. (1) → (2) is trivial, because to destroy k edge-disjoint paths, at least k edges must be deleted
(one per path).

(2)→ (1): First, let G be directed. By assigning capacity u(e) = 1 to every edge e ∈ E(G), we produce
the network G∗ = (G,u,s,t). The capcity of a cut in this network is just the number of edges in the cut.

Assuming (2), the minimum capacity of a directed s-t-cut is at least k. By the max-flow min-cut theorem,
G∗ has an (integral) flow f of value at least k. Then, by the flow decomposition theorem,

value(f) =
∑
L∈P∗

ω(L)

Combinatorial Optimisation | 21

MA252 2.6 Network Flow

where P ∗ is a family of s-t-paths, and ω(L) = 1 for all L ∈ P ∗. The members of P ∗ are edge disjoint,
because by the same theorem,

f(e) =
∑

L∈P∗∪C∗

ω(L)

It follows that G contains k edge-disjoint paths.

Now, let G be undirected. Transform G into a directed graph
−→
G by replacing every edge as follows:

•
u v u v

•

If (2) holds on G, then (2) also holds for
−→
G . So,

−→
G has k edge-disjoint s-t-paths, and hence G has k

edge-disjoint s-t-paths. ■

Corollary 2.9.1. An undirected graph G on at least two vertices is k-edge connected if and only if for
each pair of distinct vertices s and t, there are k edge-disjoint s-t-paths.

Proof. Follows directly from the theorem. ■

Theorem (Menger (Vertex Connectivity)). Let G be a graph (directed or undirected), and let s,t be two
non-adjacent vertices of G. Let k ∈ N. Then, these two statements are equivalent:

1. There are k vertex-disjoint s-t-paths in G.

2. After deleting any k− 1 vertices (distinct from s or t) from G, t is still reachable from s (e.g. G is
connected).

If the latter property holds in a graph for all non-adjacent s,t, then the graph is said to be k-vertex
connected.

Proof. (1)→ (2) is trivial, because to destroy k vertex-disjoint paths, at least k vertices must be deleted
(one per path).

(2) → (1): First, let G be directed. Transform G into a new graph G′ by replacing each vertex of G as
follows:

v v′ v′′

Supose G′ contains k− 1 edges whose deletion makes t′ unreachable from s′′. Then, G has at most k− 1
vertices whose deletion makes t unreachable from s. Because this contradicts (2), we conclude that after
deleting any k − 1 edges from G′, t′ is still reachable from s′′. From the edge connectivity statement of
Menger’s theorem, G′ has k edge-disjoint s′′-t′-paths. It should be clear that these paths must also be
vertex disjoint. It follows that G contains k vertex-disjoint s-t-paths.

The undirected version follows from the directed one in by the same construction as in the proof of the
edge connectivity statement. ■

Corollary 2.9.2. An undirected graph G on at least k vertices is k-vertex connected if and only if for
each pair of distinct vertices s and t, there are k vertex-disjoint s-t-paths.

Proof. Suppose G is k-vertex connected, but there exists vertices s and t in G such that there are not
k vertex-disjoint s-t-paths. If s is not adjacent to t, then we apply the vertex connectivity statement of
Menger’s theorem to conclude that there is a set U ⊂ V (G) of at most k − 1 vertices such that G \ U is
disconnected, giving a contradiction.

Combinatorial Optimisation | 22

MA252 2.7 Matchings

Instead suppose that s and t are adjacent, and denote this edge e. By deleting e from G, we obtain a
graph G′ such that there are not k − 1 vertex-disjoint s-t-paths. We again apply Menger’s theorem to
G′, concluding there exists a set X ⊂ V (G′) of at most k − 2 vertices such that G′ \X is disconnected.
Denote by S the connected component of G′ \ X containing s, and by T the connected component of
G′ \X containing T . At least one of them contains a vertex v different from s and t because |V (G′)| > k.
Without loss of generality, suppose that v is unreachable from s in G′ \ X. Then, s and v are in
different components of G \ (X ∪ {t}), contradicting the assumption that G is k-vertex connected, as
|X ∪ {t}| ≤ k − 1. This completes the forward implication.

We prove the reverse implication by contraposition. Suppose G is not k-vertex connected, so there exists
a set U of at most k− 1 vertices such that G \U is disconnected. Take s from one connected component
of G \ U , and t from another. Then, G has no k-vertex-disjoint s-t-paths. ■

The vertex-connectivity of a graph G is the maximum k such that G is k-(vertex)-connected. The
edge-connectivity is similarly the maximum k such that G is k-edge connected.

2.7 Matchings
Let G be a simple graph. A matching in G is a subset M ⊆ V (E) such that no two edges in M are
incident to the same vertex. We say that a vertex v is covered by a matching M if v is incident to an
edge e ∈M . The matching number of a graph is the size of a maximum matching.

A matching is perfect if it covers all vertices of the graph. A perfect matching is only possible on graphs
with an even number of vertices.

Given a simple graph G, the maximum matching problem is to find a matching of maximum cardinality
in G.

Recall that a subset of vertices S ⊆ V is an independent set of the graph if there are no edges between
any pair of vertices in S, and that a graph is bipartite if its vertex set can be partitioned into two
independent sets.

• The path graph Pn is bipartite for any value of n.

• The cycle graph Cn is bipartite for even values of n

Theorem (Characterisation of Bipartite Graphs). A graph is bipartite if and only if every closed walk
in the graph is of even length.

Proof. Suppose G is a bipartite graph with partites L and R, and let C = (c1,c2, . . . ,ck) be a closed walk
in G. Without loss of generality, suppose we have c1 ∈ L. Then, because G is bipartite, we have c2 ∈ R,
c3 ∈ L, c2n ∈ R, C2n+1 ∈ L. Because the walk is closed, it must be the case that ck ∈ R, so k must be
even. This completes the forward implication.

Now, suppose G is a simple graph with no closed walks of odd length. Without loss of generality, G is
connected. Let v,x,y ∈ G.

Let Px be a shortest path connecting v to x, and let Py be a shortest path connecting v to y.

Let z be a vertex in both Px and Py closest to x and y. Then, d(z,x) and d(z,y) have the same
parity. It follows that x and y are not adjacent, or else an odd cycle is created. This suggests the
set V1 = {u ∈ V (G) : d(u,v) ≡ 1 (mod 2)} is an independent set. Through a similar argument,
V2 = {u ∈ V (G) : d(u,v) ≡ 0 (mod 2)} is also an independent set. These two sets are clearly disjoint and
together cover the vertex set of G, so they partition the vertex set of G and hence G is bipartite. ■

Corollary 2.9.3. A graph is bipartite if and only if every cycle in the graph is of even length.

Proof. The cycles in a graph are a strict subset of the closed walks. ■

Combinatorial Optimisation | 23

MA252 2.7 Matchings

In a graph G, a vertex cover is a subset S ⊆ V (G) such that every edge in E(G) is incident to at least
one vertex in S. The vertex cover number is the size of a minimum vertex cover.

Lemma 2.10. For all simple graphs G, the following statements hold:

1. A set S ⊆ V (G) is a vertex cover if and only if V (G) \ S is an independent set.

2. The sum of the independence number and the vertex cover number is equal to the number of vertices
in G.

3. The vertex cover number is at most twice the matching number.

Proof. (1) and (2) follow from the definitions of a vertex cover and an independent set.

(3): Let M be a maximal matching. Let Vm be the set of vertices incident with edges of M . Since M
is maximal, every edge of the graph is incident to a vertex of Vm, and hence Vm is a vertex cover with
|Vm| = 2|M |. Some of these vertices may not be required to form a vertex cover, so this gives an upper
bound on the minimum vertex cover V , namely |V | ≤ 2|M |. ■

If G is bipartite we can tighten this bound to an equality.

Theorem (Kőnig). In any bipartite graph, |M | = |S| for a maximum matching M and minimum vertex
cover S.

Proof. Let G = (L∪R,E) be a bipartite graph. Denote by G′ the graph obtained from G by adding two
vertices s and t, connecting s to every vertex of L, and connecting t to every vertex of R.

Then, the maximum number of vertex-disjoint s-t-paths in G′ is equal to the matching number of G.
The minimum number of vertices whose deletion makes t unreachable from s is also equal to the vertex
cover number of G.

It follows from the vertex connectivity statement of Menger’s theorem that these two values are equal. ■

2.7.1 Hall’s Condition

Theorem (Hall). Let G = (L ∪ R,E) be a bipartite graph. Then, G admits a matching covering L (an
L-perfect matching) if and only if for all X ⊆ L, we have,

|N(X)| ≥ |X|

Proof. If G has an L-perfect matching, then |N(X)| ≥ |X| holds for all X ⊆ L trivially.

Now, suppose |N(X)| ≥ |X| holds for all X ⊆ L, but there does not exist an L-perfect matching. Then
by Kőnig’s theorem, the vertex cover number is less than |L|.

Let A ⊆ L and B ⊆ R such that A ∪ B is a vertex cover of size |A ∪ B| ≤ |L|. Because G is bipartite,
N(L \A) ⊆ B, so it follows that,

|N(L \A)| ≤ |B|
< |L| − |A|
= |L \A|

■

We can restate Hall’s theorem in set theoretic terms.

Consider a family of sets, S, with A1, A2, · · ·An ⊆ S. A system of distinct representatives (an SDR) is
a set of distinct elements, {x1,x2, · · · ,xn} ⊆ S, such that for all i ∈ [1,n], xi ∈ Ai.

Combinatorial Optimisation | 24

MA252 2.7 Matchings

A family of sets, S, satisfies Hall’s condition if, for each subfamily W ⊂ S, we have,

|W | ≤

∣∣∣∣∣ ⋃
A∈W

A

∣∣∣∣∣
A family of sets admits an SDR if and only if Hall’s condition is satisfied. That is, there exists an SDR
for a family of sets A1, A2, · · ·An if the union of any k of these sets contains at least k elements for all
k ∈ [1,n].

We now give necessary and sufficient conditions for the existence of a perfect matching.

Theorem 2.11. A bipartite graph G = (L ∪ R,E) admits a perfect matching if and only if |A| = |B|
and |N(X)| ≥ |X| for all X ⊆ L.

Remark. If G = (L ∪ R,E) is k-regular, then |E| = k|L| = k|R|, and hence |L| = |R|. This allows us to
rephrase the previous theorem.

Theorem 2.12. Every regular bipartite graph has a perfect matching.

Proof. Let G = (L ∪R,E) be a k-regular bipartite graph. Let X ⊆ L. Because G is k-regular, there are
k|X| edges connected to X ⊆ L, and k|N(X)| edges connected to N(X) ⊆ R. The former set of edges
is contained within the latter, so k|X| ≤ k|N(X)|, and hence |X| ≤ |N(X)|, satisfying Hall’s condition.
By Hall’s theorem, there exists a matching on L, so every vertex in L is paired with a vertex in R. But,
|L| = |R|, so the matching is perfect. ■

Theorem 2.13. The maximum matching problem can be solved for bipartite graphs with n vertices and
m edges in O(nm) time.

Proof. Let G = (L ∪R,E) be a bipartite graph. Construct a network G∗ by:

• Adding a source s and connecting it to every vertex of L;

• Adding a sink t and connecting it to every vertex of R;

• Orienting all edges to point from s to A, from A to B, and from B to t;

• Defining the capacity function u : E → R≥0 by u(e) = 1 for all edges e ∈ E.

Since all capacities are integers, there exists an integral maximum flow f . Because of flow conservation,
the edges of G with a non-zero flow form a matching. Since the flow is maximum, the matching is
maximum.

The maximum is attained after at most n augmentations in the Ford-Fulkerson algorithm. Since each
augmentation takes O(m) time, the total time complexity of finding a maximum matching in G is
O(nm). ■

2.7.2 Maximum Independent Set

Given a simple graph G, the maximum independent set problem is to find an independent set in G of
maximum cardinality.

Recall:

• For any bipartite graph, the matching number is equal to the vertex cover number (Kőnig’s theorem)

• For any graph, the sum of the independence number and the vertex cover number is equal to the
number of vertices in the graph.

Theorem 2.14. The maximum independent set problem can be solved for bipartite graphs with n vertices
and m edges in O(nm) time.

Combinatorial Optimisation | 25

MA252 2.7 Matchings

2.7.3 Augmenting Paths

Let G be a graph, and M a matching in G. A path P is an M -alternating chain if E(P) \ M is a
matching. An M -alternating chain is additionally M -augmenting if its endpoints are not covered by M .
That is, P is M -alternating if its edges alternate between being in and not in M . If both endpoints are
not in M , then P is additionally M -augmenting.

Theorem (Berge). A matching M is maximum if and only if there are no M -augmenting chains.

Proof. If an M -augmenting chain, P , exists, then (M \P)∪ (P \M) is a matching of cardinality strictly
greater than M , so M is not maximum. Intuitively, we simply flip the edges in the augmenting chain,
and take the result to be the new matching.

Conversely, if M is not maximum, and M ′ is a matching such that |M ′| > |M |, then (M \M ′)∪(M ′ \M)
consists of vertex-disjoint alternating cycles and alternating paths, where at least one path has more edges
in M ′ than in M . This path is M -augmenting. ■

2.7.4 Maximum Weight Matching

Given a simple weighted graph (G,w), the maximum weight matching problem is to find a matching in
G of maximum total weight. Conversely, the minimum weight perfect matching problem is to find a
matching in G of minimum total weight, or decide that G has no perfect matching.

Theorem 2.15. The maximum weight matching problem is equivalent to the minimum weight perfect
matching problem.

Proof. Let (G,w) be an instance of minimum weight perfect matching, and let K = 1+
∑

e∈E(G) |w(e)|.
If w′(e) = K − w(e) for each edge e ∈ E(G), then any maximum weight matching in (G,w′) gives a
solution to the minimum weight perfect matching in (G,w).

Let (G,w) be an instance of maximum weight matching. Then, add |V (G)| new vertices to G and all
possible edges to create a complete graph G′ on 2|V (G)| vertices. Define w′(e) = −w(e) for the original
edges of G and w′(e) = 0 for new edges. Then, a minimum weight perfect matching in (G′,w′) yields a
maximum weight matching in G by deleting the edges not in G. ■

2.7.5 Maximum Independent Set

Given a simple graph G, the conjugate, adjoint, or line graph of G is a graph L(G) that represents the
adjacencies between edges of G. We construct L(G) as follows:

• For each edge in G, we have a vertex in L(G);

• For every pair of edges in G that are incident to the same vertex, we include an edge between their
corresponding vertices in L(G).

Remark. The claw graph K1,3 is not a line graph, so any graph containing the claw as an induced
subgraph is not a line graph.

A graph that does not contain the claw as an induced subgraph is called a claw-free graph.

Given a simple graph G, the maximum independent set problem is to find an independent set in G of
maximum cardinality.

Theorem 2.16. The maximum independent set problem restricted to the class of line graphs is equivalent
to the maximum matching problem.

Proof. M ⊆ E(G) is a matching G if and only if M is an independent set in L(M). That is, finding a
maximum matching in G is equivalent to finding a maximum independent set in L(G). ■

Combinatorial Optimisation | 26

MA252 2.8 Graph Transformations for Maximum Independent Sets

Let G = (V,E) be a graph, and let S ⊆ V be an independent set. Let H be a bipartite subgraph of G
with partites A and B such that,

• A ⊆ S;

• B ⊆ V \ S;

• ∀e ∈ B : N(e) ∩ (S \A) = ∅ - the vertices of B do not have neighbours in S \A;

• |A| < |B|.

Then, H is an augmenting graph for S.

Corollary (Characterisation of Maximum Independent Sets). An independent set S is maximum if and
only if there is no augmenting graphs for S.

Proof. If there is an augmenting graph for an independent set S, then S is not maximum, because
(S \A) ∪B is a larger independent set. This proves the forward implication by contraposition.

If S is not maximum, and R is a larger independent set, then the bipartite graph with partites S \ R
and R \ S is augmenting for S. This proves the reverse implication by contraposition. ■

The class of line graphs is a subclass of claw-free graphs.

Remark. Every bipartite claw-free graph has vertex degree at most 2. Every connected bipartite claw-
free graph is either a path or a cycle. Every connected augmenting graph in the class of claw-free graphs
is a path with odd number of vertices.

Theorem 2.17. An independent set S in a claw-free graph is maximum if and only if there is no
augmenting path for S.

Theorem 2.18. The problem of finding augmenting paths in claw-free graphs (and hence line graphs)
is solvable in polynomial-time.

2.8 Graph Transformations for Maximum Independent Sets
Lemma 2.19. Let G be a graph and x,y be two adjacent vertices of G. If every vertex z adjacent to x is
also adjacent to y, then the independence number of G is equal to the independence number of G \ {y}.

Proof. Clearly, the independence number of G is at least the independence number of G \ {y}.

To prove the reverse inequality, let S ⊂ V (G) be an independent set in G. If it does not contain y,
then it is also an independent set in G \ {y}. Otherwise, if S contains y, then it contains neither x, nor
any neighbour of x. But then, (S \ {y}) ∪ {x} is an independent set on G \ {y} of size |S|. Then, the
independence number of G is at least the independence number of G \ {y}. ■

Given a vertex x, suppose N(x) = Y ∪ Z. We vertex split x by replacing it by three vertices, x′, y, and
z, such that N(x′) = {y,z}, N(y) = Y , and N(z) = Z.

Lemma 2.20. Let G′ be the graph obtained by vertex splitting a vertex x in G. Then, the independence
number of G′ is one greater than the independence number of G.

Proof. Let S be an independent set in G containing x. Then, (S \ {x}) ∪ {y,z} is an independent set in
G′ of size |S|+ 1. If S does not contain x, then S ∪ {x′} is an independent set in G′ of size |S|+ 1. So,
the independence number of G′ is at least one greater than the independence number of G.

Conversely, let S be an independent set in G′. If it contains at most one vertex in {x′,y,z}, then by
deleting this vertex, we obtain an independent set in G of size |S| − 1. If S contains two vertices in
{x′,y,z}, then these vertices must be y and z, and hence (S \ {y,z} ∪ {x}) is an independent set on G of

Combinatorial Optimisation | 27

MA252 2.9 Stable Matching

size |S| − 1. So, the independence number of G′ is at most one greater than the independence number
of G. ■

2.9 Stable Matching
Given two sets A and B of equal cardinality n, a matching is a bijection from the elements of one set to
the other. Suppose further that each element x ∈ A has an ordered list of preferences of elements in B,
and similarly, each element in y ∈ B has an ordered list of preferences of elements in A. If an element a
prefers b to c, we write a : b > c.

A matching is stable if there does not exist elements x ∈ A and y ∈ B such that x prefers y over its
assigned element and y also prefers x over its assigned element.

The stable marriage problem or stable matching problem (SMP) is to find a stable matching arrangement
for two such sets A and B.

Example. A = {x,y}, B = {u,v},

x : u > v

y : v > u

u : x > y

v : x > y

The matching {x,v},{y,u} is unstable, because x prefers u over v, and u also prefers x over y.

The matching {x,u},{y,v} is stable, because no pair prefers each other over their assigned elements.

One algorithm to solve this problem is the Gale-Shapley algorithm.

1. At each point of the algorithm, each element is either fixed or free, with every element initially
being free. Elements of A may alternate between being fixed and being free, but elements of B
cannot be free after being fixed.

2. In each round of the algorithm, each element x ∈ A interacts with its preferences in order, provided
the preferences haven’t been interacted with in previous rounds.

3. If the preference element y is free, the two are matched and both become fixed. Otherwise, y is
fixed and already has a match, z. y then compares x to z. Whichever is preferred by y becomes
the new match, becoming fixed, and the rejected element becomes free.

4. Repeat until every element is fixed.

Combinatorial Optimisation | 28

MA252 2.9 Stable Matching

Algorithm 10 Gale-Shapley Algorithm

1: procedure SMP(A, B)
2: matches = []
3: for n ∈ A ∪B do
4: n.free = true
5: end for
6: while ∃x ∈ A : x.free = true do
7: y = x.preferences.pop()
8: if y.free = true then
9: matches.append((x,y))

10: x.free = false
11: y.free = false
12: else if ∃z : (z,y) ∈ matches then
13: if y : x > z then
14: matches.remove((z,y))
15: matches.append((x,y))
16: z.free = true
17: end if
18: end if
19: end while
20: end procedure

Proof. Each element in A has an interact at most n times, so the algorithm terminates after at most n2

operations.

The algorithm stops when all elements are matched, and the two input sets are of equal cardinality, so
the produced matching is perfect.

Now, suppose an element x ∈ A prefers an element y ∈ B to its assigned element. Then, x interacted
with y and, either x was not preferred over the element assigned to y at that time, or, y preferred x over
its assigned element, but later changed for a more preferable element. In both cases, y prefers its current
assigned element over x, and hence the matching is stable. ■

A stable matching is optimal for an element x if there is no stable matching with an assignment x
would prefer. Conversely, a stable matching is pessimal for x if there is no stable matching with a worse
assignment for x. We say that x and y are a stable pair if there exists a stable matching where x and y
are matched.

Theorem 2.21. The stable matching produced by the Gale-Shapley algorithm is:

• Independent of the order of elements selected to interact;

• Optimal for elements of A;

• Pessimal for elements of B.

Proof. Order the elements of A arbitrarily, and let x and y be matched by the algorithm in a stable
matching M1.

Suppose there exists y′ such that x : y > y′, and suppose that (x,y′) is a stable pair, so there exists a
stable matching M2 where x is matched with y′.

Then, x was rejected by y′, and without loss of generality, suppose this was the first time a stable pair
was rejected by the algorithm.

Combinatorial Optimisation | 29

MA252 2.10 Eulerian Graphs

Now, suppose y′ rejected x in favour of x′, and let y′′ be the match of x′ in M2. Then (x′,y′′) is also a
stable pair. If x′ : y′′ > y′, then x′ interacted with y′′ before y′, which means the stable pair (x′,y′′) was
rejected before (x,y′), contradicting the assumption that (x,y′) was the first stable pair rejected by the
algorithm.

So, x′ : y′ > y′′. But then, the matching M2 is not stable, because x′ and y′ are not matched, and they
both prefer each other over their assigned elements.

This contradiction shows that every element x ∈ A is matched with its favourable stable partner; the
matching is optimal for elements of A. Because the ordering was arbitrary, any ordering produces the
same result.

Now, suppose y : x > x′, and suppose the algorithm matches y with x, but there is a stable matching M3

where y is matched with x′. Let y′ be the match of x in M3. Since the algorithm produces an matching
optimal for elements of A, it must be the case that x : y > y′. But then, x and y are not matched, and
they both prefer each other over their assigned elements, contradicting the stability of M3. ■

2.10 Eulerian Graphs
Recall that an Eulerian walk is a trail which traverses every edge. An Eulerian circuit is both a trail
and cycle which traverses every edge.

A graph that admits an Eulerian walk is traversable or semi-Eulerian. A graph that admits an Eulerian
circuit is Eulerian.

Theorem (Euler). A connected undirected graph admits an Eulerian circuit if and only if the degree of
each vertex is even.

A connected directed graph admits an Eulerian circuit if and only if the in-degree |δ−(v)| is equal to the
out-degree |δ+(v)| for each vertex v.

Proof. The necessity of the degree conditions is obvious. Sufficiency is proved by the following algorithm.
■

Given a connected undirected graph G with even degree vertices, or a digraph with in-degree equal to
out-degree for all vertices, Fleury’s algorithm returns an Eulerian circuit.

1. Start at an arbitrary vertex, v0.

2. At each step, choose an edge whose deletion would not disconnect the graph, unless no such edge
exist, in which case, pick the remaining edge left at the current vertex.

3. Move to the other endpoint of the edge and delete the edge.

4. Now repeat until no edges remain.

5. The sequence from which the edges were chosen forms an Eulerian cycle.

Combinatorial Optimisation | 30

MA252 2.11 Chinese Postman

Algorithm 11 Fleury’s Algorithm (Undirected)

1: Let v0 ∈ V (G) be arbitrary.
2: procedure fleury(G, v0)
3: W = [v0]
4: x = v0
5: while E(G) ̸= ∅ do
6: if δ(x) = ∅ then ▷ For digraph G, check δ+(x) = ∅
7: W = [v0,e0,v1,e1, . . . ,vk,ek,vk+1]
8: for i = 0 to k do Wi = fleury(()G, vi)
9: end for

10: W = W0,e0,W1,e1, . . . ,Wk,ek,vk+1

11: return W
12: else
13: e = (x,y),y ∈ δ(x) ▷ For digraph G, y ∈ δ+(x)
14: W = W,e,y
15: x = y
16: E(G) = E(G) \ {e}
17: end if
18: end while
19: end procedure

Theorem 2.22. Fleury’s algorithm runs in O(n+m) time for a graph with n vertices and m edges.

Proof. We prove correctness by induction on m. The case E(G) = ∅ is trivial.

When line 7 is run, vk+1 = v1 because of the degree conditions, so W is a closed walk at this stage. Let
G′ be the subgraph of G at this stage. Then, G′ also satisfies the degree conditions.

Since G is connected, every connected component of G′ contains at least one of vi. Then, by the induction
hypothesis, every edge of G′ belongs to one of Wi, and hence the closed walk W composed in the last
step is indeed Eulerian.

The runtime is linear because each edge is deleted immediately after being examined. ■

Corollary 2.22.1. An Eulerian walk exists if and only if there are at most two vertices of odd degree.

2.11 Chinese Postman
A postman must deliver mail along all streets of a town. How can he leave the post office, finish his job
and return to the post office having traversed a minimum distance?

That is, given an weighted connected graph, the Chinese postman problem is to find a closed walk of
minimum total weight visiting each edge at least once. More symbolically, the problem is, given a
weighted connected graph (G,w), the task is to find a function n : E(G)→ R≥0 such that the graph G′

constructed from G by taking n(e) copies of each edge e ∈ E(G) is Eulerian, and∑
e∈E(G)

n(e)w(e)

is minimum.

If the graph is Eulerian, then the Eulerian walk provides an optimal solution. Otherwise, some edges
must be visited more than once. It makes no sense to walk through an edge more than twice, so we we

Combinatorial Optimisation | 31

MA252 2.11 Chinese Postman

can restrict n : E(G)→ {1,2}. Therefore, the task simplifies to finding a subset S ⊆ E(G) of minimum
weight such that the graph obtained from G by doubling the edges in S is Eulerian.

As an aside, let us look at another problem.

Let G be an undirected graph, and let T ⊆ V (G) be a subset of even cardinality. A subgraph J is a
T -join if |J ∩ δ(x)| is odd if and only if x ∈ T . In other words, a T -join is a spanning subgraph of G with
the same vertex set as G, but only the edges that ensure that all the vertices in T have odd degree, and
all the vertices not in T have even degree.

The fact that there are no T -joins for |T | odd directly follows from the handshaking lemma.

Given an undirected weighted graph (G,w) and a set T ⊆ V (G) of even cardinality, the minimum weight
T -join problem is to find a minimum weight T -join in G, or decide that none exists.

Lemma 2.23. Let G be a graph and let T ⊆ V (G) be a subset of even cardinality. There exists a T -join
in G if and only if |V (C) ∩ T | is even for each connected component C in G.

Proof. If J is a T -join, then for each connected component C in G, we have,∑
v∈V (C)

|J ∩ δ(v)| = 2|J ∩ E(C)|

So, |J ∩ δ(v)| is odd for an even number of vertices in V (C). Since J is a T -join, this means that
|V (C) ∩ T | is even. This completes the forward implication.

Conversely, let |V (C) ∩ T | be even for each connected component C of G. Then T can be partitioned
into pairs {v1,w1}, . . . ,{vk,wk} with k = |T |/2 such that for each i, the pair {vi,wi} belongs to the same
connected component. Let Pi be an arbitrary vi-wi-path, and let,

J :=
k

△
i=1

E(Pi)

where △ is the symmetric difference operation (A△B := (A \B) ∪ (B \A) = {x : (x ∈ A)⊕ (x ∈ B)}).

The symmetric difference of more than two sets consists of the elements that belong to an odd number of
the sets. Observe that if the paths P1, . . . ,Pk are disjoint, then J is a T -join by definition, as it respects
the degrees of vertices in T and not in T . If the paths are not disjoint, then the degree of each vertex
has the same parity with respect to J as with respect to the disjoint union of the paths. In either case,
J is a T -join, completing the reverse implication. ■

Lemma 2.24. A T -join J in a weighted graph (G,w) has minimum weight if and only if for each cycle
C in G, we have,

w(J ∩ E(C)) ≤ w(E(C) \ J)

Proof. If w(J ∩ E(C)) > w(E(C) \ J), then J △ E(C) is a T -join of lower weight than J .

Conversely, if J ′ is a T -join with w(J) < w(J), then the subgraph of G formed by the edges of J △ J ′

is Eulerian, as the degree of each vertex in this subgraph is even, in which case, it is the union of cycles.
For at least one cycle C, we must have w(J ∩ E(C)) > w(J ′ ∩ E(C)) = w(E(C) \ J). ■

Lemma 2.25. Let (G,w) be a weighted graph, and let T ⊆ V (G) be a subset of even cardinality. Every
optimum T -join in G is the symmetric difference of |T |/2 paths whose endpoints are distinct and belong
to T , and possibly some zero-weight cycles.

Combinatorial Optimisation | 32

MA252 2.12 Independence System

Proof. We induct on T . The case T = ∅ holds trivially.

Let J be any optimum T -join in G. Without loss of generality, J contains no zero-weight cycle. By
Theorem 2.24, J contains no cycle of positive weight. Since w is non-negative, J is a forest. Let x and y
be two leaf nodes in the same connected component of this forest, and let P be the unique x-y-path in J .
Then, by the definition of a T -join, x,y ∈ T . So, J \E(P) is an optimum T ′-join, where T ′ = T \ {x,y},
so a cheaper T ′-join would imply a cheaper T -join. The lemma follows by induction. ■

Theorem 2.26. The minimum weight T -join problem with non-negative weights can be solved in poly-
nomial time.

Proof. For each pair x,y ∈ T , we find a shortest x-y-path Px,y and construct an auxiliary complete
edge-weighted graph G∗ with vertex set T , in which the weight of the edge (x,y) equals the length of
the path Px,y. Finding these paths for all possible pairs of vertices x and y can be done in O(|V |3) time
using the Floyd-Warshall algorithm.

Then, we find in G∗ a perfect matching M of minimum weight, which takes polynomial time.

Let J be the symmetric difference of the paths Px,y taken over all edges (x,y). Then J is a T -join, and
is minimum because M has minimal weight. ■

Theorem 2.27. If the weights are non-negative, then the minimum weight T -join problem coincides
with the undirected Chinese postman problem.

Proof. Otherwise, let T be the set of vertices of odd degree, noting that |T | is even by the handshaking
lemma, and set w(e) = 1 for all edges e ∈ E(G). Now compute a minimum-cost T -join J with respect to
w, and form the multigraph G∗ by duplicating the edges in J . A Euerian cycle in G∗ is now the desired
Chinese postman tour in G. ■

2.12 Independence System

For a finite set S, we denote by P(S) or 2S the power set of S (the set of all subsets of S).

A set system (V,F) consists of a finite set V and some set of subsets F ⊆ P(V).

A set system S = (V,I) is furthermore an independence system if,

(M1) ∅ ∈ I

(M2) For each Y ⊆ X, Y ∈ F → X ∈ I .

This latter property is also called the hereditary property or downward-closedness.

Elements of I are called independent or feasible, while elements of I \ V are dependent or infeasible.

Minimal dependent sets are called circuits, and maximal independent sets are called bases. For X ⊆ V ,
the maximal independent subsets of X are called bases of X.

Let (V,I) be an independence system. For X ⊆ V , we define the rank rank(X) of X as the size of a
maximum subset of X that belongs to I .

Example. The following are all independence systems:

1. V = V (G) and I is the set of independent sets in a graph G.

2. V = E(G) and I is the set of forests in G.

3. V is the set of columns of a matrix over some field and I is the power set of linearly independent
columns.

Combinatorial Optimisation | 33

MA252 2.12 Independence System

4. V is any finite set, k is an integer, and I the subsets of V of cardinality at most k.

Given an independence system (V,I) and a weight function w : V → R, a minimisation problem is to
find a basis of minimum total weight, while a maximisation problem is to find an independent set of
maximum total weight.

Many combinatorial optimisation problems can be formulated as minimisation and maximisation prob-
lems. For instance,

• MAXIMUM-WEIGHT-STABLE-SET

• TSP

• SHORTEST-PATH

• KNAPSACK

• MINIMUM-WEIGHT-SPANNING-TREE

• MAXIMUM-WEIGHT-FOREST

• STEINER-TREE

• MAXIMUM-WEIGHT-BRANCHING

• MINIMUM-WEIGHT-BRANCHING

• JSSP (JOB-SHOP-SCHEDULING-PROBLEM)

An independence system (V,I) is a matroid if,

M3 ∀X,Y ∈ I : |X| > |Y | →
(
∃x ∈ X \ Y :

(
Y ∪ {x}

)
∈ I

)
- if X,Y ∈ I and |X| > |Y |, then there

exists an x ∈ X \ Y such that Y ∪ {x} ∈ I .

Example.

1. (Independent sets in a graph) is not a matroid.

2. (Forests in a graph) is a matroid known as the cycle (graphic) matroid.

3. (Linearly independent columns) is a matroid known as the vector matroid.

4. (Subsets of size at most k) is a matroid known as the uniform matroid.

Theorem 2.28. Let (V,I) be an independence system. Then the following statements are equivalent:

(M3) ∀X,Y ∈ I : |X| > |Y | →
(
∃x ∈ X \ Y :

(
Y ∪ {x}

)
∈ I

)
(M3)’ For all Z ⊆ V , all bases of Z have the same cardinality.

Proof. Suppose (M3) is valid, but (M3)’ is not, and let X and Y be two bases if Z such that |X| > |Y |.
Then by (M3), there is an x ∈ X \ Y such that Y ∪ {x} ∈ I . Since x ∈ X \ Y ⊆ X ⊆ Z, Y ∪ {x} ⊆ Z,
contradicting that Y is a basis of Z.

Conversely, suppose (M3)’ is valid. If |X| > |Y |, the set Y cannot be a basis of X∪Y as Y is not maximal.
Therefore, there exists at least one element x ∈ (X ∪ Y) \ Y = X \ Y such that Y ∪ {x} ∈ I . ■

Corollary 2.28.1. Let (V,I) be a matroid and let X,Y ∈ I. If |X| > |Y |, then there exists a subset of
X \ Y of cardinality |X| − |Y | such that Y ∪ Z ∈ I.

Proof. By induction on k = |X| − |Y |. ■

Combinatorial Optimisation | 34

MA252 2.12 Independence System

(M3) and this corollary are known as the exchange, augmentation, or growth property of matroids.

Algorithm 12 Greedy Algorithm for Matroid Minimisation

1: procedure minimise((V,I),w)
2: sort(V , key = λt.w(t)) ▷ Sort elements by weight, so w(e1) ≤ w(e2) ≤ . . . ≤ w(e|V |)
3: B = ∅
4: for i = 1 to len(V) do
5: if B ∪ {ei} then ▷ Check the next cheapest edge is independent
6: B = B ∪ {ei}
7: end if
8: end for
9: return B

10: end procedure

Theorem 2.29. The greedy algorithm solves the matroid minimisation problem optimally.

Proof. Let B = {ej,1,ej,2, . . . ,ej,n} be the solution found by the algorithm. Suppose there is an element
e ∈ V \ B. If B ∪ {e} were independent, then this element would have been added to to B in line 6.
Since this element was rejected, B ∪ {e} is not independent, and hence B is a basis.

To prove optimality of B, let B∗ = {e∗j,1,e∗j,2, . . . ,e∗j,n} be any optimal solution whose elements are sorted
according by weight, as in the algorithm. Without loss of generality, B∗ has the longest “prefix” coinciding
with B.

Let jk be the smallest index such that ej,k ̸= e∗j,k. Since the set {ej,1,ej,2, . . . ,e∗j,k} is independent, ej,k
appears before e∗j,k in the order, and hence w(ej,k) ≤ w(e∗j,k).

If ej,k is the last element of B, then wB ≤ wB∗, so B is optimal. Otherwise, ej,k is not the last element
of B. Consider the set B′ = {ej,1,ej,2, . . . ,ej,k}. Since |B′| < |B∗|, there exists a set Z ⊆ B∗ \ B′

of cardinality |B∗| − |B′| such that the set B′′ = B′ ∪ Z is independent, and hence a basis. Then,
w(B′′) ≤ w(B∗), so B′′ is an optimal basis, and this has a longer prefix coinciding with B, contradicting
the choice of B∗. ■

Corollary 2.29.1. An almost identical algorithm solves the matroid maximisation problem optimially.

An independence oracle for an independence system (V,I) is a function D : P(E)→ {0,1} defined by

∀F ⊆ V,D(F) =

{
1 F ⊆ I
0 otherwise

Remark. Because an independence system is determined entirely by V and I , the independence oracle
provides enough information to recover the independence system it describes, so we can flip the definition,
and say that every independence oracle defines an independence system.

A basis-superset oracle is a function D : P(E)→ {0,1} defined by

∀B ⊆ V,B(B) =

{
1 B ∈ I ∧ ¬∃x ∈ E : B ∪ {x} ∈ I
0 otherwise

The greedy algorithm requires sorting the elements of V , which takes O(|V | log |V |) time. However, more
significantly, we need to consult with the basis-superset oracle at every step, so the complexity of the
algorithm depends on the complexity of the oracle, given by O(D).

Combinatorial Optimisation | 35

MA252 2.12 Independence System

Theorem 2.30. Let (V,I) be an independence system. The greedy algorithm solves the maximisation
problem optimally for any w : E → R if and only if (V,I) is a matroid.

This theorem allows us to bound how well greedy algorithms can solve certain problems. For instance,
the travelling salesman problem is an independence system, but not a matroid, so this theorem tells us
that a greedy algorithm cannot optimally solve the travelling salesman problem.

Proof. Suppose V,I is not a matroid. That is, there exists X,Y ∈ I with |X| < |Y | such that for all
e ∈ Y \X, X ∪ {e} ̸∈ I .

Let ϵ > 0. Define the weight function by,

w(e) :=

 1 + ϵ e ∈ X Choose first |X| steps
1 e ∈ Y \X Can’t choose
0 e ∈ E \ {X ∪ Y } Don’t change weight

So greedy outputs F with w(F) = |x|(1 + ϵ) + 0. So, w(F) = |X|(1 + ϵ) < w(Y) = |Y | for ϵ <
|Y |/|X| − 1, a contradiction to w(F) being maximum for all weight functions w. This completees the
forward implication.

Now, suppose (V,I) is a matroid. This portion of the proof is similar to the proof of correctness
for the greedy algorithm, so we give it more tersely. Let w be an arbitrary weight function, and let
F = {f1,f2, . . . ,fr} be the output of the greedy algorithm. Without loss of generality, suppose w(f1) ≥
w(f2) . . . ≥ w(fr). Suppose there exists G ∈ I such that |F | < |G|. By the augmentation property, there
exists g ∈ G\F such that F ∪{g} implies there exists t such that {f1, . . . ,ft,g,ft+1, . . . ,fs} = F ∪{g} ∈ I
with w(ft) ≥ w(g) ≥ w(ft+1). We also have {f1, . . . ,ft} ⊆ {f1, . . . ,ft,g} ∈ I , so g should have been
chosen in step t+ 1 of the greedy algorithm. So, F has maximum cardinality by contradiction.

Suppose there exists G = {g1,g2, . . . ,gr} ∈ I such that w(G) > w(F), and w(gi) ≥ w(gi+1). So,∑
gi∈G

w(gi) >
∑
fi∈F

w(fi)

so, there exists k such that w(gk) > w(fk) since |G| ≤ |F |. Take X = {f1,f2, . . . ,fk−1} (= ∅if k = 1),
and Y = {g1,g2, . . . ,gk}. Clearly, |X| < |Y |, so by the augmentation property, there exists gt ∈ Y \X
with t ≤ k such that {f1,f2, . . . ,gt} = X ∪ {gt} ∈ I . Because w(gt) ≥ w(gk) > w(fk), gt should have
been chosen before step k of the greedy algorithm, contradicting correctness, and so G does not exist
and hence w(f) is maximum.

This completes the reverse implication. ■

Given two matroids, (V,I1) and (V,I2), the matroid intersection problem is to find a set X ∈ I1 ∩ I2
such that |X| is maximum.

Theorem 2.31. Edmonds’ algorithm solves the matroid intersection problem. If the matroids are given
by independence oracles with maximum complexity T , then the algorithm solves the problem in O(|V |3T)
time.

The partition matroid is defined as follows. Let Bi be a collection of disjoint subsets of V , and let di be
integers with 0 ≤ di ≤ |Bi|. Define I ⊆ V to be independent if |I ∩Bi| ≤ di for each i.

In particular, if i = 1 and B1 = V , the partition matroid is the uniform matroid.

Given a bipartite graph G = (A, ∪B,E), define two partition matroids MA and MB on E as follows:

MA: for each vertex i ∈ A, let Ai be the set of edges incident to i and di = 1.

MB : for each vertex i ∈ B, let Bi be the set of edges incident to i and di = 1.

Combinatorial Optimisation | 36

MA252 Polynomial Time Solvability

Theorem 2.32. The maximum matching problem for G coincides with the matroid intersection problem
for MA and MB.

Theorem 2.33. The family of independent sets in a graph G forms a matroid if and only if every
connected component of G is a clique.

Proof. Let G be a graph, of which every connected component is a clique. For a subset U ⊆ V (G), every
basis in U contains exactly one vertex in each connected component in G[U] (the subgraph induced by
U). Therefore, all bases in U have the same size, and hence the family of independent sets in G forms a
matroid, completing the forward implication.

If G contains a connected component with is not a clique, then it contains a subset U ⊆ V (G) inducing
a path on 3 nodes. But then U has two bases of size 1 and 2, so the family of independent sets in G do
not form a matroid, completing the reverse implication. ■

Theorem 2.34. Every independence system is the intersection of finitely many matroids.

Proof. Let C be a circuit of (V,I), and IC the family of subsets A ⊆ E such that C is not a subset of
A. Then, (V,FC) is a matroid because,

(M1) ∅ ∈ IC .

(M2) For each A ⊆ B, B ∈ F → A ∈ I .

(M3)’ All bases of (V,FC) have size |V | − 1.

and (V,I) is the intersection
⋂
(V,IC) taken over all circuits C of (V,I). ■

Theorem 2.35. The problem of finding a maximum independent set in the intersection of 3 matroids
is NP-hard.

3 Polynomial Time Solvability

For many combinatorial optimization problems, polynomial-time algorithms are known. However, there
are also many important problems for which no polynomial-time algorithms are known to exist. Although
we cannot prove that none exists, we can show that a polynomial-time algorithm for one “hard” problem
would imply a polynomial-time algorithm for other “hard” problems.

3.1 Decision Problems
An alphabet in the context of formal languages is any set of symbols, often denoted by Σ. A word over
an alphabet is any finite sequence of letters.

The Kleene star, also known as the free monoid constructor, is a unary operation, either on sets of strings,
or sets of symbols or characters. The application of the Kleene star to a set V is written as V ∗.

1. If V is a set of strings, then V ∗ is defined as the smallest superset of V that contains the empty
string, ε, and is closed under string concatenation.

2. If V is a set of symbols or characters, then V ∗ is the set of all strings over symbols in V , including
the empty string ε.

More formally, given a set V , we define the sets

V 0 = {ε}
V 1 = V

Combinatorial Optimisation | 37

MA252 3.1 Decision Problems

and recursively define the set,

V i+1 = {wv : w ∈ V i,v ∈ V } for each i > 0

If V is a formal language, then V i is a shorthand for the concatenation of V with itself i times. That
is, V i represents the set of all strings that can be represeted as the concatenation of i strings in V . The
Kleene star on V is then defined as:

V ∗ =
⋃
i≥0

V i

The Kleene star is highly important in theoretical computer science, particularly in complexity and
computability theory.

Remark. If V is countable, then V ∗ is the countable union of countable sets, and is hence countable.

The set of all words over an alphabet Σ is then Σ∗. A formal language L over an alphabet Σ is a subset
of Σ∗.

Let {0,1}∗ be the set of all binary words, and let L ⊆ {0,1}∗ be a language. L can be interpreted as a
decision problem as follows: given any binary string, decide whether it belongs to L.

Conversely, assuming a fixed efficient encoding, we can encode the input to any problem that can be
answered positively or negatively as a binary string, in which case the set of all instances of the problem
defines a language X, and the set of “yes” instances defines a subset Y ⊆ X.

A decision problem is a pair P = (X,Y) where X is a language decidable in polynomial time, and Y ⊆ X.
The elements of X are called instances, the elements of Y are yes-instances, and the elements of X \ Y
are no-instances. Decision problems in theoretical computer science are often written in (abbreviated)
full capital letters.

An algorithm for a decision problem P = (X,Y) is an algorithm computing the function f : X → {0,1}
such that f(x) = 1 for x ∈ Y and f(x) = 0 for x ∈ X \ Y . For instance, given an undirected graph,
encoded as a binary string, we might ask, “Is there a Hamiltonian cycle in G?”

Theorem (Cantor’s Diagonal Argument). There are functions f : N → {0,1} that cannot be computed
by any algorithm.

Proof. Algorithms are finite sequences of a finite alphabet of possible instructions, so there are countably
many possible algorithms, while the set of functions f has size 2ℵ0 = P(N) = c which is uncountable, so
no bijection can exist between the sets.

More specifically, by Cantor’s Diagonal Argument, c is strictly larger than ℵ0, so there are more functions
than there are algorithms, as required. ■

An oracle is an abstract machine (a generalisation of a function) that is assumed to be able to solve a
specific problem (even non-decision problems) in a single operation. The problem is not assumed to even
be computable - an oracle is simply a black box that is able to produce a solution for any instance of a
given computation program.

A certificate or a witness is a string that certifies the membership of some string in a language. So, for
the Hamiltonian cycle question, a certificate for a graph G would simply be a Hamiltonian cycle: clearly,
if you have one, the graph G should be in X.

The class of all decision problems which admit a polynomial time algorithm is called P or PTIME (for
Polynomial Time).

In contrast, NP (Non-Deterministic Polynomial time) is the class of decision problems that admit a
polynomial-time certificate-checking algorithm. P is a subclass of NP, as every problem that is solvable
in polynomial time can also be checked in polynomial time by just solving the problem. As shown

Combinatorial Optimisation | 38

MA252 3.2 Boolean Satisfiability

above, Hamiltonian Cycle is NP, and, currently, there does not exist a polynomial time algorithm for
Hamiltonial Cycle, so it is not P.

Many decision problems encountered in combinatorial optimisation belong to NP. For many of them,
such as Hamiltonian Cycle, it is not known whether they admit polynomial time algorithms. However,
we can say that certain problems are not easier than others. This can be formalised through the concept
of polynomial reduction.

Let P1 = (X1,Y1) and P2 = (X2,Y2) be decision problems. Let f : X2 → {0,1} with f(x) = 1 for x ∈ Y2

and f(x) = 0 for x ∈ X2\Y2. We say that P1 polynomially reduces to P2 if there exists a polynomial-time
algorithm for P1 using f as an oracle.

Theorem 3.1. If P1 polynomially reduces to P2, and there is a polynomial-time algorithm for P2, then
there is a polynomial-time algorithm for P1.

Proof. The oracle for P2 is queried at most polynomially many times in the polynomial-time algorithm
for P1. If there is a polynomial-time algorithm for P2, then it can be used as the oracle, so P1 is the
composition of two polynomial-time algorithms, and is hence polynomial-time. ■

Let P1 = (X1,Y1) and P2 = (X2,Y2) be decision problems. We say that P1 polynomially transforms to
P2 if there exists a function f : X1 → X2 computable in polynomial time such that f(x1) ∈ Y2 for all
x1 ∈ Y1 and f(x1) ∈ X2 \ Y2 for all x1 ∈ X1 \ Y1.

A decision problem Π ∈ NP is called NP-complete if all other problems in NP polynomially transform to
Π. So, to prove a problem is NP-complete, we need to show it is in NP, and to polynomially transform
a known NP-complete problem into it.

Conversely, a problem Π ∈ NP is NP-hard if all problems in NP polynomially-reduce to Π.

3.2 Boolean Satisfiability
In propositional logic or zeroth-order logic, we deal with statements called propositions and logical con-
nectives between them. Propositions cannot contain variables, and are therefore either always true, or
always false. We also use the symbols, ⊤ and ⊥, or 1 and 0, for true and false, respectively.

Propositions:

• 2 + 2 = 4 (always true).

• 2 + 2 = 5 (always false).

• “Socrates is a man” (always true).

• “Socrates is a dog” (always false).

Non-propositions:

• x+ 2 = 4 (either true or false, depending on the value of x).

• 0x = 0 (always true, but not a proposition because it contains a variable).

• 0x = 1 (always false, but still not a proposition).

• “Socrates” (this is an object and doesn’t have a truth value by itself).

Notably, in propositional logic, the proposition “Socrates is a man” is an indivisible atom of truth or
falsity that says nothing about “Socrates” or “[being] a man” individually. Because it is an indivisible
statement, we can represent the whole proposition with a single letter, for example, p. We cannot,
however, represent either individual part alone.

Combinatorial Optimisation | 39

MA252 3.2 Boolean Satisfiability

Such an indivisible proposition is called an atom, an atomic formula or a literal . Literals can also be
divided into positive and negative polarities, where a negative literal is the negation of a positive literal;
i.e., “p” is a positive literal, and “¬p” is a negative literal. Positive and negative literals are also called
each other’s complementary literals.

Propositions in isolation are not very interesting. So much so that we often don’t even consider specific
propositions, and just refer to general ones with letters, often p and q. We can make these propositions
slightly more interesting by combining them with logical connectives into compound propositions.

• Negation or NOT - the negation of p is written as ¬p or sometimes p̄. It is false when p is true,
and true when p is false. This is pretty much the same as in normal conversation.

• (Inclusive) Disjunction, Join or OR - the disjunction of p and q is written p ∨ q, and is true if at
least one of p and q is true.

Note that this is different than how we often use “or” in normal conversation: if I were to, completely
truthfully, say “You will give me your wallet, or I will stab you with this rusty kitchen knife”, you
would be understandably quite upset if you handed me your wallet and still get stabbed. However,
to a logician mugger, this would be entirely justified, as the first part of a true inclusive disjunction
being true doesn’t preclude the second from also being true.

• Exclusive Disjunction or XOR - the exclusive disjunction of p and q is written as p ⊕ q or p ⊻ q,
and is true if exactly one of p or q is true. Exclusive disjunction is not often used in classical logic,
but has many important applications, particularly in computing and finite field algebra.

To indicate exclusive disjunction, we sometimes use the wording, “either p or q”, to distinguish it
from inclusive disjunction. Now, if you are ever being mugged by a logician, you know what to ask
to clarify your chances of being stabbed.

• Conjunction, Meet or AND - the and of p and q is written as p∧ q, and is true when both p is true
and q is true. This one is generally the same as in common speech.

• Material Implication or Material Conditional - This is perhaps the most important connective for
proofs, corresponding to the “If... then...” pattern of speech. The implication of p and q is written
p → q or p ⇒ q. p is called the antecedent or premise, and q the consequent of the implication.
The implication is true when (p is true and q is true), or when p is false. In fact, the only way for
p→ q to be false, is if p is true, but q is false, so another way to write this is ¬p ∨ q.

p → q being true when p is false but q is true often causes some surprise; after all, if p is false,
then how can it claim any credit for q being true? Both statements being false also leading to the
compound being true also seems somewhat suspect.

This surprise might be because in ordinary language, we usually aren’t interested in implications
where the first proposition is known to be false, so we don’t usually think to assign them any truth
values. However, one reason why it’s nice to define the truth values in this way, is that we often
use the implication symbol in this way. For example, we should all agree that the proposition,

∀x ∈ Z : (x > 1) =⇒ (x2 > 2)

is true.

The statement contains infinitely many implications - one for each integer - so included within it
is the statement, 0 > 1 =⇒ 02 > 2, where the antecedent and consequent are both clearly false,
but we still say that the proposition is true overall. Because of this, we define p → q to be true
whenever p is false, regardless of the value of q.

In ordinary language, we often interpret “if... then...” to be the much stronger biconditional where
it otherwise carries connotations of causality. This is another reason why we define our terms so

Combinatorial Optimisation | 40

MA252 3.2 Boolean Satisfiability

stringently in mathematics and logic, due to natural language being rife with hidden rules and
assumptions∗.

I could once again, entirely truthfully, say, “If the moon is made of green cheese, then the world
will end at midnight”. It may sound like I know of some mechanism by which a green-cheese moon
will cause the end of the world, but I am simply making a trivially true statement by starting with
a false premise and violating the implicit assumption that a statement in a conversation should
mean something and not just be an exercise in logic.

Conditional propositions like this where the antecedent is false, are called vacuous truths, because
the proposition is true while not really saying anything meaningful - in particular, we can’t infer
anything about the truth value of the consequent from a vacuous truth. These can sometimes
cause seemingly incoherent statements to be true. For example, the proposition “All the lights in
the room are turned on and turned off” is true if there are no lights in the room to begin with. In
the equation above, the proposition as a whole is considered to be true non-vacuously, since some
integers are indeed greater than 1 and the proposition still holds for them, but we would say that
the cases where x < 1 are vacuously true.

Alternative wordings to “if p then q” include; “p is sufficient for q”, because knowing p is true is
sufficient information to tell us that q is true; or “q is necessary for p”, because q being true is
guaranteed by p being true (or equivalently, it is impossible to have p be true without q also being
true). We will generally use the “if... then...” pattern in this document, but sufficient and necessary
are commonly used in other fields.

• Material Equivalence, Material Biconditional or XNOR - If both p → q and q → p, such that p
and q always share the same truth values, then we write p ↔ q or p ⇔ q, and say p holds if and
only if q holds.

Again, however, this is purely a logical proposition, and no causality between p and q has to be
enforced. For example, the compound proposition, “The moon is made of green cheese if and only
if 2+ 2 = 5” is true, despite the lack of connection between green-cheesiness and faulty arithmetic,
purely because both sub-propositions are false.

Alternatives to “p if and only if q” include; “q is necessary and sufficient for p”, which is a combina-
tion of the two alternative wordings for material implication; “p precisely/exactly when q”; or the
abbreviation, “p iff q”. This last alternative, “iff”, is sometimes regarded as unsuitable for formal
writing, so a style guide should be consulted before it is used in such a setting. We will continue
to use “if and only if” in this document.

A valuation on a Boolean expression is an assignment of truth values to the literals in the expression.

A compound proposition is in conjunctive normal form or CNF if it is a conjunction of one or more
clauses, where a clause is a disjunction of atoms; it is an AND of OR statements. A compound proposition
is similarly in disjunctive normal form or DNF if it is the disjunction of one or more clauses, where a
clause is a conjunction of atoms; it is an OR of AND statements.

Propositions in CNF:

• p

• (p ∨ ¬q) ∧ r

• (p ∨ q) ∧ (¬p ∨ r) ∧ q ∧ (¬q ∨ ¬r)

• p ∧ ¬q ∧ r ∧ t ∧ ¬u ∧ v

Propositions not in CNF:

• (p ∧ q) ∧ (q ∨ r)

∗Search up “Grice’s maxims” or “the cooperative principle” for an interesting discussion on this topic.

Combinatorial Optimisation | 41

MA252 3.2 Boolean Satisfiability

• (p ∨ q) ∧ (q→¬r) ∧ (¬p ∨ r)

• (p ∨ (q ∧ r)) ∧ (p ∨ ¬r)

Interchanging ∧ and ∨ above gives examples of clauses in and not in DNF.

Using the equivalence of material implication and disjunction, along with De Morgan’s laws and the
distributive laws, it is possible to rewrite any compound proposition in a normal form. However, applying
these laws blindly does not necessarily produce the simplest normal form for a compound proposition.

For example,

(P → Q) ∧ (¬P → Q) ≡ (¬P ∨Q) ∧ (P ∨Q)

≡ (¬P ∧ P) ∨ (¬P ∧Q) ∨ (Q ∧ P) ∨ (Q ∧Q)

≡ 0 ∨ (¬P ∧Q) ∨ (Q ∧ P) ∨Q

≡ (¬P ∧Q) ∨ (Q ∧ P) ∨Q

Inspecting the clauses closer, we see that Q controls the value of the entire expression, so a simpler CNF
for the proposition is just Q.

≡ Q

We should really draw out a truth table to prove this formally, but it should be clear enough that this
is true.

Theorem 3.2. There is a polynomial time algorithm to reduce any Boolean expression to a DNF and
CNF representation.

Given a CNF C, the satisfiability problem or SAT is to determine if there is a valuation such that C
evaluates to true.

Theorem (Cook). SAT is NP-complete.

The satisfiability problem restricted to instances where each clause contains at most three literals is
called 3-SAT.

Theorem 3.3. 3-SAT is NP-complete.

Proof. Clearly, 3-SAT belongs to NP. To prove completeness, we show that SAT polynomially transforms
to 3-SAT.

Let Z = (x1 ∨ x2 ∨ . . . ∨ xk) be a clause containing k > 3 literals. Transform Z as follows:

(x1 ∨ x2 ∨ . . . ∨ xk) 7→ (x1 ∨ x2 ∨ . . . ∨ xk−1 ∨ u) ∧ (¬u ∨ xk−1 ∨ xk)

where u is a new variable.

Suppose there is an assignment φ satisfying the original CNF. If Z is satisfied by one of the first k − 2
literals, then by defining, φ(u) = 0, we extend φ to an assignment satisfying the transformed CNF. If Z
is satisfied by xk−1 or xk, we define φ(u) = 1 and obtain an assignment satisfying the transformed CNF.

Conversely, suppose there is an assignment φ satisfying the transformed CNF. If φ(u) = 0, then Z is
satisfied by one of the first k − 2 literals. If φ(u) = 1, then Z is satisfied by xk−1 or xk.

So, an assignment φ satisfies Z if and only if it satisfies the transformed CNF.

Because a Boolean formula contains finitely many terms, this algorithm always terminates. Applying
this transformation repeatedly, the original CNF can be transformed into an instance of 3-SAT which is
satisfiable if and only if the original one is. ■

Combinatorial Optimisation | 42

MA252 3.2 Boolean Satisfiability

Theorem 3.4. 2-SAT is P.

Proof. The implication a→ b is logically equivalent to ¬a∨b, so, in 2-SAT, the clause x1∨x2 is equivalent
to the pair of implications ¬x1 → x2 and ¬x2 → x1. If x1 is true, then x2 must be true, and if x2 is
false, then x1 must be false.

These implications are straightforward, so we just follow every possible implication chain and see if we
ever derive both ¬x from x or x from ¬x. If we do for some x, then the 2-SAT formula is unsatisfiable.
Otherwise, it is satisfiable. The number of possible implication chains is polynomially bounded in the
size of the input formula, so they are checkable in polynomial time. ■

Remark. With 3-SAT, we can express implications of the form a→ b ∨ c, where a,b,c are literals. Now,
if a is true, then one or both of b and c are true, but we don’t know which. In this case, we have to do
case analysis, and combinatorial explosion occurs.

Theorem 3.5. HAMILTONIAN-CYCLE is NP-complete.

Proof. Membership in NP is obvious. To prove completeness, we polynomially transform 3-SAT to
HAMILTONIAN-CYCLE.

Let C be a CNF with clauses Z1,Z2, . . . ,Zm over the set of variables X = {x1,x2, . . . ,xn}, with each
clause containing three variables. We note that there are 2n possible valuations on C. We model these
2n possible valuations using a digraph with 2n different Hamiltonian cycles.

Construct n paths P1,P2, . . . ,Pn corresponding to the n variables, each consisting of 2k nodes, Pi =
(vi,1,vi2 . . . ,vi,2k). We add edges from vi,j−1 to vi,j on Pi corresponding to the assignment xi = true
(picturing the paths as lying left to right, these edges point left to right). We add edges from vi,j to
vi,j−1 on Pi corresponding to the assignment xi = false (right to left). Next, add the edges (vi,1,vi,k)×
(vi+1,1,vi+1,k).

Next, add a source node s and target node node t, and connect s to v1,1 and vi,k, and connect t to vn,1,
vn,k, and s.

Next, add a node C1,C2, . . . ,Cm for each clause. If a clause Cj contains the variable xi, connect Cj to
xi,2j−1 and xi,2j , left to right (add edges (xi,2j−1,Cj), and (Cj ,xi,2j)) if Cj contains the positive literal
xi, and right to left (add edges (xi,2j ,Cj), and (Cj ,xi,2j−1)) if Cj contains the negative literal ¬xi.

Any Hamiltonian cycle in the graph traverses Pi either from right to left, or left to right, because any
path entering a node vi,j has to exit from vi,j+1 either immediately, or via one clause-node in between,
in order to maintain the Hamiltonian property. Similarly, all paths entering at vi,j−1 must exit from vi,j .

Note that this graph can be constructed in polynomial time.

Since each path P1 can be traversed in two possible ways, and we have n paths mapping to n variables,
there can be 2n Hamiltonian cycles in the graph G \ {C1,C2, . . . ,Ck}, each corresponding to a different
valuation of x1,x2, . . . ,xn.

If there exists a Hamiltonian cycle H in G

• If H traverses Pi from left to right, assign xi = true;

• If H traverses Pi from right to left, assign xi = false.

Since H visits each clause node Cj , at least one of the Pi was traversed in the correct direction relative
to the node Cj , so the assignment obtained here satisfies the given 3-CNF.

Conversely, if there exists a satisfying assignment for the 3-CNF, select the path that traverses Pi from
left to right if xi = true, or right to left if xi = false, including the clause nodes whenever possible.
Connect the source to P1, P2 to t, and Pi to Pi+1 appropriately so as to maintain the continuity of

Combinatorial Optimisation | 43

MA252 3.3 Approximation Algorithms

the path, then connect t to s to complete the cycle. Since the assignment is such that every clause
is satisfied, the clause-nodes are included in the path. The Pi nodes, s and t are all included, and all
the paths are traversed in one direction only so no node is repeated twice, so the path obtained is a
Hamiltonian Cycle. ■

Theorem 3.6. MAXIMUM-INDEPENDENT-SET is NP-complete.

Proof. Membership in NP is obvious. To prove completeness, we polynomially transform SAT to
MAXIMUM-INDEPENDENT-SET.

Let Z be a collection of clauses Z1,Z2, . . . ,Zm over the set of variables X = {x1,x2, . . . ,xn}, with each
Zi containing ki literals (βi,1∨βi,2∨ . . .∨βi,k). We construct a graph G such that G has an independent
set of size m if and only if there is a truth assignment satisfying all m clauses.

For each clause Zi, we introduce a clique of ki vertices, one vertex per literal. Two vertices in different
cliques (clauses) are connected by an edge if and only if they represent the same variable, but of different
polarity.

Suppose G has an independent set S of size m. Then each of these cliques contains exactly one vertex.
Setting each of these literals to be true, we obtain an assignment satisfying all m clauses since no two
literals in S are in conflict.

Conversely, if there is a truth assignment satisfying all m clauses, then we choose a true literal out of
each clause. The set of corresponding vertices defines an independent set in G of size m. ■

Theorem 3.7. MAXIMUM-INDEPENDENT-SET is NP-complete for graphs of degree at most 3.

Proof. If G has a vertex x of degree at least 4, we apply vertex splitting with |Y | = 2. In the trans-
formed graph, x′ has degree 2, y has degree 3, and z has degree deg(x) − 1. Repeated applications of
vertex splitting transforms G into a graph of vertex degree at most 3, and clearly this transformation is
polynomial. ■

Theorem 3.8. MINIMUM-VERTEX-COVER and MAXIMUM-CLIQUE are NP-complete.

The travelling salesman problem (TSP) asks the following question: Given a list of cities and the distances
between each pair of cities, what is the shortest possible route that visits each city exactly once and
returns to the origin city?

That is, given a weighted complete graph (Kn,w), find a Hamiltonian cycle of minimum weight.

Theorem 3.9. TSP is NP-hard.

Proof. We give a reduction from HAMILTONIAN-CYCLE.

Let G be an instance of HAMILTONIAN-CYCLE. Construct an instance G′ of TSP as follows: V (G′) =
V (G) with every two vertices of G′ being adjacent. Define w((u,v)) = 1 if (u,v) ∈ E(G) and w((u,v)) = 2
otherwise. Then G has a Hamiltonian cycle if and only if the optimum tour in G′ has length n. ■

3.3 Approximation Algorithms
An absolute approximation algorithm for an optimization problem P is a polynomial-time algorithm A
for P for which there exists a constant k such that |A(I) − Opt(I)| ≤ k for all instances I of P , where
A(I) is the size of the solution found by the algorithm A and Opt(I) is the size of an optimal solution.

Let P be an optimization problem with non-negative weights and k ≥ 1. A k-factor approximation
algorithm for P is a polynomial-time algorithm A for P such that 1/kOpt(I) ≤ A(I) ≤ kOpt(I) for all
instances I of P . We also say that A has performance ratio k.

Combinatorial Optimisation | 44

MA252 3.4 Chromatic Numbers

The first inequality applies to maximization problems and the second one to minimization problems.

A 1-factor algorithm is an exact polynomial-time algorithm.

Theorem 3.10. There is no k such that the greedy algorithm for VERTEX-COVER is a k-factor
approximation algorithm.

Proof. Let p ∈ N and Gp be a graph with vertex set V (G) = A ∪B ∪ C, where |A| = |B| = p. For each
i ∈ [2,3, . . . ,p− 1], split the vertices of B into ⌊p/i⌋ groups and for each group introduce the vertex of A
adjacent to the vertices of that group. The algorithm may first delete the vertices of A, in which case
the size of the solution is |A| + p. On the other hand B is an optimal solution of size p, and the ratio
|A|/p+ 1. ■

Theorem 3.11. There is a 2-factor approximation algorithm for VERTEX-COVER.

Proof. Let M be a maximum matching in G. Then the set of vertices covered by M is a vertex cover
containing 2|M | vertices. On the other hand, any vertex cover must contain at least |M | vertices, so
|M | ≤ τ(G) ≤ 2|M |, where τ(G) is the size of a minimum vertex cover in G. Therefore, 2|M |/τ(G) ≤ 2,
so this algorithm is a 2-factor approximation. ■

3.4 Chromatic Numbers
A vertex colouring of G is a mapping f : V (G)→ N with f(u) ̸= f(v) for all (u,v) ∈ E(G).

In other words, in a vertex colouring, every colour class is a independent set, so vertex colouring is a
partition of V (G) into independent sets.

A edge colouring of G is a mapping f : E(G) → N with f(e) ̸= f(e′) for all edges e and e′ incident to
the same vertex.

Remark. An edge colouring of G is equlvalent to a vertex colouring of the line graph of G.

Given an undirected graph G, the vertex colouring problem is to find a vertex colouring of G with
minimum colours. The optimum value of the vertex colouring problem for G is called the chromatic
number of G, denoted χ(G).

Given an undirected graph G, the edge colouring problem is to find an edge colouring with minimum
colours. The optimum value of the edge colouring problem for G is called the edge-chromatic number or
chromatic index of G, denoted χ′(G).

Theorem 3.12. The following decision problems are NP-complete for any fixed value k ≥ 3:

1. Decide whether a given graph has a chromatic number at most k.

2. Decide whether a given graph has a chromatic index at most k.

Moreover, (1) is NP-complete even for planar graphs of vertex degree at most 4, and (2) is NP-complete
for graphs of vertex degree at most 3.

Theorem 3.13. Both problems can be solved in polynomial time for k = 1,2.

Proof. χ(G) = 1 if and only G has no edges. χ(G) = 2 if and only if G is bipartite. In both caes, the
problem can be solved in polynomial time. The chromatic index of G is at most 2 if and only if the
chromatic number of L(G) is at most 2. ■

Theorem 3.14. For any graph G,
χ′(G) ≥ max

v∈V (G)
deg(v)

Combinatorial Optimisation | 45

MA252 3.4 Chromatic Numbers

Proof. To reduce clutter, define △(G) := maxv∈V (G) deg(v). We induct |E(G)|.

Let △(G) = k, and let e = (u,v) ∈ E(G). By the induction hypothesis, G \ {e} has an edge colouring f
with k colours. Since the degree of u and v is strictly less than k in G\{e}, there is a colour i ∈ {1, . . . ,k}
which is missing at u, and a colour j ∈ {1, . . . ,k} which is missing at v. If i = j, we can assign this
colour to the edge e = (u,v) in G.

Otherwise, we consider the subgraph H of G\{e} formed by the edges of colour i and j. Every vertex of
H has degree at most 2, and hence every connected component of H is either a path or a cycle. Each of
u and v has degree 1 in H (degree 2 is not possible because each of them misses one of the two colours;
degree 0 would allow to use the same argument as when both of them miss the same colour). Therefore,
the connected component of H containing u is a path, and the connected component of H containing v
is a path, and these two paths are different, otherwise we would have i = j. But now we can exchange
the colours on the path containing u, and assign colour j to the edge e in G. ■

Theorem (Vizing). For any graph G,

△(G) ≤ χ′(G) ≤ △(G) + 1

Corollary 3.14.1. The edge colouring problem admits an absolute approximation algorithm on simple
graphs.

Let ω(G) denote the size of a maximum clique in G.

Theorem 3.15. For any graph G,

ω(G) ≤ χ(G) ≤ △(G) + 1

Proof. Since the vertices of any clique must have pairwise different colours in any proper colouring of G,
we must have ω(G) ≤ χ(G).

For the second inequality, let V (G) = {v1, . . . ,vn}, and let S be a set of △(G) + 1 colours. Assign any
colour from S to v1, and then proceed by induction as follows: for each i, vertex vi has at most △(G)
neighbours among v1, . . . ,vi−1, and hence at least one colour from S is missing among the neighbours of
vi. Assign this colour to vi, and proceed to vi+1. ■

Corollary 3.15.1. A vertex colouring of G with △(G) + 1 colours can be found in linear time.

Theorem (Brooks). If G is a connected graph which is neither complete nor an odd cycle, then χ(G) ≤
△(G).

Corollary 3.15.2. Every connected graph of vertex degree at most 3 is 3-colourable, except for K4.

A graph is planar if it can be drawn on the plane in such a way that no edges cross each other. A face
of a planar graph is a maximal section of the plane in which any two points can be joined by a curve
that does not intersect any part of G. The degree of a face is the number of edges in the boundary
surrounding the face.

Theorem (Euler). Let G be a connected planar graph with n vertices, m edges, and f faces. Then,

n−m+ f = 2

Proof. By induction on m. For m = 0, G = K1, a graph with 1 vertex and 1 face. Suppose the formula
is true for any connected planar graph with fewer than m edges, and let G have m edges. If G is a tree,
then m = n− 1 and f = 1 and the formula holds. Otherwise, if G is not a tree, consider a cycle C, and
an edge e ∈ C. The graph G \ {e} is connected, has the same number of vertices, one edge fewer, and
one face fewer. By the induction hypothesis, in G \ {e}, we have n− (m− 1) + (f − 1) = 2. Thereefore
in G, we have n−m+ f = 2. ■

Combinatorial Optimisation | 46

MA252 3.4 Chromatic Numbers

Corollary 3.15.3. If G is a connected planar graph with n ≥ 3 vertices and m edges, then m ≤ 3n− 6.
If G is additionally triangle-free, then m ≤ 2n− 4.

Proof. If we trace the boundary of all faces, we encounter each edge exactly twice. Denoting the number
of faces of degree k by fk, we conclude that, ∑

k

kfk = 2m

Since the degree of any face in a simple planar graph is at least 3, we have,

3f = 3
∑
k≥3

fk

=
∑
k≥3

kfk

= 2m

Together with Euler’s formula, this proves m ≤ 3n− 6.

If G is additionally triangle-free, then,

4f = 4
∑
k≥4

fk

=
∑
k≥4

kfk

= 2m

and therefore m ≤ 2n− 4. ■

Corollary 3.15.4. K5 and K3,3 are not planar.

Proof. For K5, we have m > 3n− 6, since n = 5 and m = 10, so K5 is not planar. K3,3 is triangle-free,
and we have m > 2n− 4, since n = 6 and m = 9, so K3,3 is not planar. ■

Corollary 3.15.5. Every planar graph has a vertex of degree at most 5.

Proof. Let G be a connected planar graph with n vertices and m edges. Then,∑
v∈V (G)

deg(v) = 2m

≤ 2(3n− 6)

= 6n− 12

and hence G has a vertex of degree at most 5. ■

A graph H is a minor of G if H can be obtained from G by vertex deletions, edge deletions, and edge
contractions.

Theorem (Kuratowski). A graph G is planar if and only if G does not contain K5 nor K3,3 as minors.

Theorem (Six Colour). Every planar graph G can be vertex coloured with at most 6 colours.

Combinatorial Optimisation | 47

MA252 3.5 Bin Packing

Proof. We induct on the number of vertices. Obviously, every graph with at most 6 vertices is 6-
colourable.

If a planar graph has more than 6 vertices, delete from G any vertex v. By Corollary 3.15.5, this vertex
has degree at most 5. By the induction hypothesis, G \ {v} is 6-colourable. Then, then neighbours of v
use at most 5 different colours, so the unused colour can be used to colour v, and G is 6-colourable. ■

Theorem (Five Colour). Every planar graph G can be vertex coloured with at most 5 colours.

Proof. We induct on the number of vertices. Obviously, every graph with at most 5 vertices is 5-
colourable.

If a planar graph has more than 5 vertices, then by Corollary 3.15.5, there exists a vertex v of degree at
most 5. Delete from G this vertex to form G′ = G\{v}. By the induction hypothesis, G′ is 5-colourable.
If the neighbours of v do not use all 5 different colours, the unused colour can be used to colour v, and
G is 5-colourable. Otherwise, consider the vertices v1,v2,v3,v4,v5 adjacent to v in cyclic order (which will
depend on how we draw G), coloured with colours 1,2,3,4, and 5, respectively.

Consider the subgraph G1,3 of G′ consisting of the vertices coloured with colours 1 and 3 only, and the
edges connecting them (this is called a Kempe chain). If v1 and v3 lie in different connected components
of G1,3, we can swap the 1 and 3 colours on the connected component containing v1 without affecting
the colouring of the rest of G′. This frees colour 1 for v, completing the task. If v1 and v3 lie in the same
connected component of G1,3, then we can find a path in G1,3 consisting of only colour 1 and 3 vertices.

Now consider the subgraph G2,4 of G′ consisting of the vertices coloured with colours 2 and 4 only, and
the edges connecting them, and appply the same arguments as before. We are then either able to reverse
the 2-4 colouration on the subgraph of G2,4 containing v2 and colour v colour 2, or we can connect v2
and v4 with a path that consists of only colour 2 and 4 vertices. Such a path would necessarily intersect
the 1-3 coloured path constructed before, since the vertices were given in cyclic order, contradicting the
planarity of G. ■

Theorem (Four Colour). Every planar graph G can be vertex coloured with at most 4 colours.

Remark. The Four Colour Theorem was one of the first major theorems to be proved with significant
computer assistance.

If the Four Colour Theorem were false, then there would exist a minimal counterexample. After reducing
the possibilities with various mathematical techniques, the remaining configurations were checked using
a computer, taking over a thousand computer core hours to finish.

3.5 Bin Packing
The knapsack problem (KNAPSACK) is as follows: given a set of items, each with a weight and a value,
determine which items to include in the collection so that the total weight is less than or equal to a given
limit and the total value is as large as possible.

Theorem 3.16. Deciding the knapsack problem (“Can a value of at least V be achieved without exceeding
weight W?”) is NP-complete.

The subset sum problem (SSP) is as follows: given integers C = (c1,c2, . . . ,cn) and a target number T ,
decide if there is a subset S ⊆ {1, . . . ,n} such that∑

i∈S

cj = T

SSP is a special case of KNAPSACK.

Combinatorial Optimisation | 48

MA252 3.5 Bin Packing

Theorem 3.17. SSP is NP-hard. If T = 0, the problem is NP-complete. If the integers in C are all
positive, then the problem is NP-complete.

The partition problem is a variant of SSP where all inputs are positive, and the target sum is exactly
half the inputs. Or equivalently, ∑

i∈S

cj =
∑

i∈{1,...,n}\S

cj

Theorem 3.18. PARTITION is NP-complete.

Suppose we have n objects, each of a given size, and some bins of equal capacity. We want to assign the
objects to the bins, using as few bins as possible. Of course, the total size of the objects assigned to one
bin should not exceed its capacity. Without loss of generality, we assume that the capacity of each bin
is 1.

Given a list of non-negative numbers a1,a2, . . . ,an ≤ 1, the bin packing problem is to find a natural k
and an assignment f : {1, . . . ,n} → {1, . . . ,k} with,∑

{i:f(i)=j}

ai ≤ 1

for all j ∈ {1, . . . ,k}, such that k is minimum.

Theorem 3.19. The following problem is NP-complete: given an instance I of Bin Packing, decide
whether I has a solution with two bins.

Proof. Membership in NP is obvious. To prove completeness, we transform PARTITION by choosing

ai =
2ci∑n
i=1 ci

■

Corollary 3.19.1. It is NP-complete to distinguish whether the optimal solution is 2 or 3, and hence
for any ϵ > 0, there is no (3/2− ϵ)-factor approximation algorithm for Bin Packing.

In the online variant of the problem, items arrive one after another, and the irreversible decision of where
to place an item has to be made before knowing the next item, or even if there will be another one.

Most algorithms follow the same general pattern: if the next item fits in one of the currently open bins,
put it in one of the bins. Otherwise, open a new bin and put the new item in it. These algorithms differ
in the criterion by which they choose the open bin for the new item in the first step.

One algorithm for the online variant of Bin Packing is the next fit algorithm. In next fit, we always keep
a single open bin. When the new item doesn’t fit into it, it closes the current bin, and opens a new bin.
Its advantage is that it is a bounded-space algorithm, since it only needs to keep a single open bin in
memory.

Combinatorial Optimisation | 49

MA252 3.5 Bin Packing

Algorithm 13 Next Fit

1: procedure NF(C)
2: k = 1
3: S = 0
4: for i = 1 to n do
5: if S + ci > 1 then
6: k = k + 1
7: S = 0
8: end if
9: f(i) = k

10: S = S + ci
11: end for
12: return k,f
13: end procedure

Let NF(I) denote the number of bins found by the next fit algorithm, OPT(I) be the minimum number
of bins, and Σ(I) =

∑
i ci

Theorem 3.20.
NF(I) ≤ 2⌈Σ(I)⌉ − 1 ≤ 2OPT(I)− 1

Proof. Let k = NF(I), and let f be the assignment found by the next fit algorithm. For j ∈ {1, . . . ,⌊k/2⌋},
we have, ∑{

i:f(i)∈{2j−1,2j}
} ci > 1

Adding these inequalities, we obtain ⌊k/2⌋ < Σ(I). Since the left side is an integer, we conclude that
(k−1)/2 ≤ ⌊k/2⌋ ≤ ⌈Σ(I)⌉−1, proving k ≤ 2⌈Σ(I)⌉−1. The second inequality follows from the obvious
fact that ⌈Σ(I)⌉ ≤ OPT(I). ■

Corollary 3.20.1. Next fit is a 2-factor approximation algorithm for BIN-PACKING.

The next-k-fit algorithm (NkF) keeps the last k bins open, and chooses the first bin in which the item
fits. It is therefore a k-bounded-space algorithm. For k ≥ 2, NkF gives better results than NF, but
increasing k to constant values large than 2 improves the alorithm no further in its worst-case behaviour.

The first fit algorithm keeps all bins open, in the order they were opened, attempting to place new items
into the first bin in which it fits.

Algorithm 14 First Fit

1: procedure FF(C)
2: for i = 1 to n do

3: f(i) = min

j ∈ N :
∑

{k<i:f(k)=j}

ak + ai ≤ 1


4: k = max

i∈{1,...,n}
f(i)

5: end for
6: return k,f
7: end procedure

Theorem 3.21. FF(I) ≤ 7/4OPT(I).

Combinatorial Optimisation | 50

MA252 3.6 Steiner Trees

The first fit decreasing algorithm (FFD) sorts the items by descending size, then calls first fit. FFD
requires being able to see the entire list first and thus solves the offline variant of Bin Packing.

Algorithm 15 First Fit Decreasing

1: procedure FFD(C)
2: sort(C)
3: return NF(C)
4: end procedure

Theorem 3.22. FFD is a 3/2-factor approximation algorithm for Bin Packing.

Proof. Let I be an instance of the problem and let k = FFD(I). Consider the jth bin for j = ⌈2k/3⌉.
If it contains an item of size greater than 1/2, then each bin with smaller index did not have space for
this item. Therefore, each of these bins has been assigned an item before. As the items are considered
in non-increasing order, there are at least j items of size greater than 1/2. Thus, OPT(I) ≥ j ≥ 2k/3.

Otherwise, the jth bin and hence each bin with greater index contains no item of size greater than 1/2.
Therefore, the bins j,j+1, . . . ,k contain at least 2(k−j)+1 items, none of which fit into bins 1, . . . ,j−1.
Thus,

Σ(I) > min{j − 1,2(k − j) + 1}

≥ min

{⌈
2k

3

⌉
− 1,2

(
k −

(
2k

3
+

2

3

))
+ 1

}
=

⌈
2k

3

⌉
− 1

since OPT(I) ≥ Σ(I) > ⌈2k/3⌉ − 1, OPT(I) ≥ ⌈2k/3⌉ ≥ 2k/3. ■

3.6 Steiner Trees
Let G be an undirected graph, and let T ⊆ V (G). A Steiner tree for T is a set S such that T ⊆ V (S) ⊆
V (G) and E(S) ⊆ E(G). The elements of T are called terminals, and the elements of V (G) \ T are the
Steiner points of S.

Given an undirected weighted graph (G,w) and a set T ⊆ V (G), the Steiner tree problem is to find a
Steiner tree S for T of minimum weight.

MST (T = V (G)) and SHORTEST-PATH (|T | = 2) are special cases of STEINER-TREE solvable in
polynomial-time.

Theorem 3.23. STEINER-TREE is NP-hard, even for unit weights.

Proof. We give a transformation from MINIMUM-VERTEX-COVER, which is known to be NP-complete.

Given a graph G, we transform it to a graph H by adding, for each edge (u,v) ∈ E(G) a new vertex xu,v

which is adjacent to both u and v, and by adding edges which are missing in G.

We set w(e) = 1 for all edges e ∈ E(H), and set T = {xu,v : u,v ∈ E(G)}. We will show that G has a
vertex cover of size k if and only if H has a Steiner tree for T with k + |E(G)| − 1 edges.

Let T ∪ X be the set of vertices of a Steiner tree S in H, where X ⊆ V (G) ⊆ V (H). The set T is
independent in H as these vertices have neighbours only among the vertices of G. We also have that S
is a connected graph, so every vertex of T has a neighbour in X. This means that X is a vertex cover
in G, and E(S) = |T |+ |X| − 1 = |E(G)|+ |X| − 1, completing the forward implication.

Combinatorial Optimisation | 51

MA252 3.6 Steiner Trees

Conversely, let X be a vertex cover in G. We can connect the vertices of X in the graph H by |X| − 1
edges. Since every edge of G is covered by a vertex of X, every vertex of T is connected by an edge to
a vertex of X in H. The |X| − 1 edges connecting X and the |T | edges incident to the vertices of T
create a Steiner tree with |T |+ |X|−1 = |E(G)|+ |X|−1 edges, as required, thus completing the reverse
implication. ■

Let (G,w) be a weighted graph with all weights positive. The metric closure of (G,w) is the pair (G∗,c∗),
where G∗ is the graph with V (G∗) = V (G) in which two vertices x and y are adjacent if and only if they
are connected in G by a path and w∗(xy) equals the length of a shortest path between x and y in G.

Remark. w∗ is symmetric, point separating, and satisfies the triangle inequality, thus defining a metric
on G∗.

Theorem 3.24. Let (G,w) be a weighted graph with all weights positive, let (G∗,w∗) be its metric closure,
and let T ⊆ V (G). If S is an optimum Steiner tree for T in G, and M is a minimum spanning tree in
G∗[T], then w∗(E(M)) ≤ 2w(E(S)).

Proof. Consider the graph H containing two copies of each edge of S. Then, H is Eulerian and hence
contains an Eulerian walk W in H. This walk defines a Hamiltonian cycle W ′ in G∗[T]. Since w∗ satisfies
the triangle inequality,

w∗(W ′) ≤ w(W)

= w(E(H))

= 2w(E(S))

However, we also have w∗(E(M)) ≤ w∗(W ′) since by deleting one edge of W ′ we obtain a spanning tree
in G∗[T]. ■

This suggests the following 2-factor approximation algorithm for STEINER-TREE.

Algorithm 16 Steiner Tree

1: Compute the metric closure (G∗,w∗)
2: Compute the shortest path Ps,t for all s,t ∈ T
3: Find a minimum spanning tree M in G∗[T]

4: E(S) =
⋃

(u,v)∈E(M)

Pu,v

5: V (S) = {R ⊆ V (G) : (∀v ∈ R : (∃(u,v) ∈ E(S)) ∨ (∃(v,u) ∈ E(S)))}
6: return A minimal connected subgraph of S

Theorem 3.25. This algorithm is a 2-factor approximation for Steiner Tree and can be implemented in
O(|V (G)|3) time.

Recall that TSP is NP-hard.

Theorem 3.26. Unless P = NP, there is no k-factor approximation algorithm for TSP for any k ≥ 1.

Proof. We will show that a k-factor approximation algorithm A for TSP implies that HAMILTONIAN-
CYCLE (which is NP-complete) can be solved in polynomial time.

Given an instance G of HAMILTONIAN-CYCLE, we construct an instance G∗ of TSP with n = |V (G)|
nodes and distances w((i,j)) as follows: if i is adjacent to j, then w((i,j)) = 1; otherwise, w((i,j)) =
2 + (k − 1)n.

Combinatorial Optimisation | 52

MA252 3.6 Steiner Trees

Now, we apply A to the constructed instance of TSP. If the returned tour has length n, then this tour
is a Hamiltonian cycle in G. Otherwise the returned tour has length at least (n − 1) + 2 + (k − 1)n =
kn+1. Assuming that A is a k-factor approximation algorithm, we conclude that (kn+1)/OPT(G∗) ≥
A(G∗)/OPT(G∗) ≥ k, where OPT(G∗) is the length of the optimum tour. Hence, OPT(G∗) ≥ n+1/k >
n, showing that G has no Hamiltonian cycle. ■

Metric TSP, also known as ∆-TSP, is TSP such that the underlying graph is its own metric closure.
That is, given a positive weighted complete graph (Kn,w) with w : (E(Kn))→ R≥0 satisfying w(x,z) ≤
w((x,y)) + w(y,z) for all x,y,z ∈ V (Kn), find a Hamiltonian cycle of minimum weight.

Theorem 3.27. METRIC-TSP is NP-hard.

The greedy algorithm works badly in this problem and is not a k-factor approximation algorithm. How-
ever, the double tree algorithm has better performance on this problem.

Algorithm 17 Double Tree
1: Find a minimum weight spanning tree T in Kn with respect to w.
2: Walk around the tree, doubling each edge to create a Eulerian walk (circuit).
3: In the Eulerian walk, ignore all but the first occurence of each vertex.
4: return the tour constructed in line 3.

Theorem 3.28. The double tree algorithm is a 2-factor approximation algorithm for METRIC-TSP.

Proof. Clearly the algorithm is polynomial. Also, we have w(E(T)) ≤ OPT(Kn,c), since by deleting an
edge from any tour we obtain a spanning tree. Finally, the solution found by the algorithm is of weight
at most 2w(E(T)) ≤ 2OPT(Kn,c). ■

Combinatorial Optimisation | 53

	Table of Contents
	Complexity Analysis
	Asymptotic Notation
	Master Theorem

	Graph Theory
	Minimal & Maximal Elements
	Basic Definitions & Theorems
	Graph Traversal
	Minimum Cost Spanning Tree
	Number of Spanning Trees

	Shortest Path Algorithm
	Network Flow
	Residual Networks

	Matchings
	Hall's Condition
	Maximum Independent Set
	Augmenting Paths
	Maximum Weight Matching
	Maximum Independent Set

	Graph Transformations for Maximum Independent Sets
	Stable Matching
	Eulerian Graphs
	Chinese Postman
	Independence System

	Polynomial Time Solvability
	Decision Problems
	Boolean Satisfiability
	Approximation Algorithms
	Chromatic Numbers
	Bin Packing
	Steiner Trees

